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Abstract: The COVID-19 pandemic has persisted for almost three years. However, the mechanisms
linked to the SARS-CoV-2 effect on tissues and disease severity have not been fully elucidated. Since
the onset of the pandemic, a plethora of high-throughput data related to the host transcriptional
response to SARS-CoV-2 infections has been generated. To this end, the aim of this study was to
assess the effect of SARS-CoV-2 infections on circulating and organ tissue immune responses. We
profited from the publicly accessible gene expression data of the blood and soft tissues by employing
an integrated computational methodology, including bioinformatics, machine learning, and natural
language processing in the relevant transcriptomics data. COVID-19 pathophysiology and severity
have mainly been associated with macrophage-elicited responses and a characteristic “cytokine
storm”. Our counterintuitive findings suggested that the COVID-19 pathogenesis could also be
mediated through neutrophil abundance and an exacerbated suppression of the immune system,
leading eventually to uncontrolled viral dissemination and host cytotoxicity. The findings of this
study elucidated new physiological functions of neutrophils, as well as tentative pathways to be
explored in asymptomatic-, ethnicity- and locality-, or staging-associated studies.

Keywords: COVID-19 epidemiology; asymptomatic patients; transcriptomics; virus entry spike
absence; machine learning; natural language processing; gene signature; cytokine blunt

1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological
factor of the alarming inflammatory disease known as COVID-19. SARS-CoV-2 has a 75–80%
genomic similarity to SARS-CoV and a 50% similarity to MERS-CoV [1,2]. Its prevalence
reached pandemic heights very quickly, whilst, in global terms, 591,683,619 cases (including
6,443,306 deaths) were confirmed by the World Health Organization as of 19 August
2022. The pathology, as well as the severity of the symptoms, vary depending on the
coronavirus variant [3].

The induced pathophysiology of the alpha variant (B.1.17) is characterized by hyper-
cytokinemia, organ dysfunction, and lymphopenia, leading to acute respiratory distress
syndrome (ARDS) [4], lung injury [5], an increased neutrophil-to-lymphocyte ratio [6,7],
coagulopathy, even multiorgan failure [8,9], and sepsis [10]. The pathogenesis of the delta
variant has been attributed to the excessive host immune response, which is mediated by
increased levels of proinflammatory cytokines, mainly interleukins IL-1α, IL-1β, IL-6, IL-8,
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and IL-10 as well as interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), known as a
“cytokine storm” [11–13]. Of these cytokines, IL-6 was found to be significantly positively
correlated with a higher mortality. There is accumulating evidence that IL-6 is a principal
inducer of immune dysregulation and a perpetrator of the cytokine storm [14–17].

The omicron variants have been linked to a milder symptomatology and a lower
fatality [18,19]. In addition, the massive vaccination of the population contributed to a
higher communal immunity with effectiveness or unknown mismatch [19,20].

However, the scientific community has not completed the decipherment of the complex
mechanisms linking infection and disease severity; the most impressive characteristic of this
pandemic is the heterogeneity in clinical imaging and pathophysiology. Thus, the patterns
underlying the pathology, heterogeneity, and severity of COVID-19 remain underexplored,
leading mainly to therapies for COVID-19 infections targeting the cytokine signaling
processes and hyperinflammation [21,22].

Consequently, as the knowledge gaps are vast in this newly emerged epidemic, novel
technologies and approaches have been exploited. Since the COVID-19 pandemic onset,
high-throughput sequencing technologies, such as RNA-sequencing (RNA-Seq), have
facilitated the generation of a great amount of gene expression data related to the SARS-
CoV-2-induced host transcriptome response. In particular, Liao et al. [23], in a RNA-Seq
analysis of the alveolar fluid in nine patients, reported that high macrophage-driven
responses and a “cytokine storm” were potentially preventing adequate T-cell responses
to SARS-CoV-2 in patients with severe diseases. Ong and colleagues, accordingly, using
the same method in the blood segments of three patients, associated the intrapulmonary
immune response with systemic changes as they observed high IL-1 pathway cytokines
followed by a T-cell decrease [24].

The virulence distribution as well as the tissue/organ injuries are under-/misexplored
so far, leading to contradictory immune response patterns. Physicians and researchers
acknowledge that more accuracy and precision is needed. Personalized treatment has arisen as
a necessity but is inconclusive regarding the whole puzzle of tissue immune responsiveness—
infectivity signatures—as disease staging and patient clustering remain unelucidated [25,26].

The human host transcriptome profiling of intra- and extrapulmonary tissues based
on the blood immune response to SARS-CoV-2 was investigated to identify a soft tissue
immune response pattern and diagnostic gene expression signatures.

To this end, we employed an integrative in silico approach to process, analyze, and
interpret publicly accessible gene expression data relevant to the host transcriptional
response to SARS-CoV-2 infections, including bioinformatics, machine learning, and natural
language processing.

2. Materials and Methods
2.1. Acquisition of High-Throughput Transcriptome Data

The publicly accessible repository NCBI GEO (Gene Expression Omnibus) DataSets
(https://www.ncbi.nlm.nih.gov/gds/; accessed on 10 March 2022) [27,28] was searched
for transcriptomics datasets related to human responses to SARS-CoV-2. The criteria for
choosing datasets were: (i) gene expression data from SARS-CoV-2-infected and healthy
tissue samples and (ii) datasets including ≥ 5000 genes. In this way, two eligible RNA-Seq
datasets were obtained. The tissue samples in the datasets were divided into two groups:
the SARS-CoV-2-infected tissues, or “COVID-19”, and non-infected tissues, or “control”.

The GEO series of the two data sets, including data extracted from patients infected
with alpha variant (B.1.17) of SARS-CoV-2, were as follows:

(i) GSE150316 [25] contained genome-wide transcriptomics data of COVID-19 patients
collected at two institutions in the USA, the Massachusetts General Hospital (20 patients)
and Columbia University Irving Medical Center (4 patients). The transcriptomes of lung,
heart, liver, kidney, and bowel tissue samples were investigated (Table S1). The Illumina
MiSeq (Homo sapiens) GPL15520 and Illumina NextSeq 500 (Homo sapiens) GPL18573
platforms were used.

https://www.ncbi.nlm.nih.gov/gds/
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(ii) GSE167000 [26] included global gene expression data from whole blood samples
derived from 65 SARS-CoV-2-positive and 30 SARS-CoV-2–negative individuals collected
at the University of Colorado Anschutz Medical Campus (Table S1). The Illumina NovaSeq
6000 (Homo sapiens) GPL24676 platform was employed.

2.2. RNA-Seq Data Processing

The raw RNA-Seq reads contained in the FASTQ files were retrieved from their respec-
tive Sequence Read Archive (SRA) files by using the SRA Tool Kit version 2.9.6 [29] with
the fastq-dump –gzip –skip-technical –readids –dumpbase –clip –split-3 command. Subse-
quently, the RNA-Seq reads were mapped to the human reference genome GRCh38.p13
with annotation derived from Ensembl version 104 by employing the spliced aligner
HISAT2 v.2.1.0 [30] with the hisat2 -p -dta -x {input.index} -U {input.fq} -S {out.sam} pa-
rameters. The generated SAM files were converted to binary BAM files with the usage
of SAMtools v.1.14 [31] with the samtools sort -@ 10 -o {output.bam} {input.sam} com-
mands. The assembler StringTie v.1.3.5 [32], using the stringtie -e -B -p -G {input.gtf}
-A {output.tab} -o {output.gtf} -l {input.label}{input.bam} parameters, was employed for
transcriptome normalization, assembly, and quantification. The reconstructed transcripts
and transcript abundance estimates were reported in the output GTF file. The gene sym-
bols and gene names were assigned according to the official HUGO Gene Nomenclature
Committee (HGNC) [33].

2.3. Differential Gene Expression Analysis

For blood and lung tissue samples, differential gene expression analysis of the “COVID-
19” and “control” RNA-Seq groups was performed using the edgeR package (version
3.32.0) [34] of the R programming environment v.3.6.1 (https://www.r-project.org; accessed
on 28 March 2022). First, the trimmed mean of M-value (TMM) normalization implemented
in edgeR was applied to the count data. The negative binomial distribution was used to
model the RNA-Seq reads per gene per sample in edgeR. The dispersion in the datasets
was estimated with the estimateDisp function. The glmFit and glmLRT functions of the
edgeR package v3.32.0 were used to fit the data and compare the two RNA-Seq groups,
respectively. The Benjamini–Hochberg (BH) method for controlling the false discovery
rate (FDR) was used for p-value adjustment [35]. Those DEGs, with an absolute log2-fold
change (FC) greater than 1 (|log2FC > 1|) and a corrected p-value ≤ 0.05, were considered
statistically significant.

Given the small sample numbers for the heart, liver, kidney, and bowel tissues, a
different protocol for differential gene expression analysis was followed. In particular, in
order to identify more biologically relevant sets of genes, the rank product (RP) method was
used based on calculating rank products from experiments in a fast and simple way. This
method is based on biologically significant FCs, providing, at the same time, an estimate
of the statistical significance. The RP method is essentially a nonparametric method for
detecting DEGs in microarray experiments [36,37]. The genes are ranked according to their
FC, and then analysis is performed separately for upregulated and underregulated genes.
For instance, concerning the upregulated gene g with i 1

4 1, 2, ..., k replicates, the rank
product is given by the geometric mean:

RP(g) =

(
k

∏
i=1

rg,i

)1/k

The RP method is available as an R package (RankProd). The use of exact calculation
and permutation methods have been proposed to determine the statistical significance
when the sample size is small. RP is more robust and accurate for sorting genes based
on differential expression compared to t-statistics, especially for studies with sample size
n < 10 [38]. In this study, FC was calculated, and then the RankProd analysis package in

https://www.r-project.org
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R [36] was used to calculate the ranks and the p-values of the genes of each tissue. The FDR
value of < 5% was applied as a cutoff to increase the power of our study.

Venn diagrams of the DEGs per tissue were constructed using the online tool Draw
Venn Diagram (https://bioinformatics.psb.ugent.be/webtools/Venn/; accessed on
3 April 2022).

To visualize the DEGs, heatmap plots of the DEGs were created using the “pheatmap”
package of R (https://CRAN.R-project.org/package=pheatmap; accessed on 5 April 2022)
v. 1.0.12.

2.4. Principal Component Analysis

Principal component analysis (PCA) of the blood and lung transcriptomics data was
performed. To this end, blood and lung transcriptomics FPKM data were filtered so the
expression value of the genes was greater than “1” in at least half of the samples in each
group. Next, the filtered FPKM data were log2-transformed and “1” was added (FPKM + 1)
because expression values with “0” cannot be log-transformed. The R “stats” (version 4.1.1)
function prcomp was used to generate PCA objects of the filtered log2-transformed FPKM
values. To visualize the PCA plots, the fviz_pca_ind function of the “factoextra” package
(https://CRAN.R-project.org/package=factoextra; accessed on 27 March 2022) was used.

2.5. Ensemble Machine Learning

To detect the most important DEGs across tissues, a voting classifier, an ensemble
model of machine learning, was applied [39]. A voting classifier typically uses multiple
models of various types and combines their predictions into a final result with the usage of
simple statistics. There are two types of voting, namely hard voting and soft voting. In hard
voting, each base model casts one vote for its predicted outcome, and the ensemble model
makes a decision on the basis of the majority of the classifiers’ predictions, i.e., if the result
of the majority of the models’ votes is class 0, accordingly, the ensemble’s prediction will be
class 0 as well. In soft voting, each model outputs a probability for its prediction rather than
a single vote, and also the ensemble model takes the classifiers’ average probability per
class and makes a prediction based on that average. All voting methods were implemented
using the scikit-learn library in Python 3.9.7.

First, three classifiers, namely random forest, k-nearest neighbor (KNN), and naïve
Bayes, were selected. Random forest is a bagging ensemble algorithm which makes use of
multiple different algorithms and generates a final result based on them [40]. KNN [41]
classifies a new data point by searching the entire training set for the k most similar instances
that are closest to the test data point. In KNNs, k denotes the number of nearest neighbors
that are to be included in the voting processes. Naïve Bayes [41] is a simple yet powerful
classification algorithm. It is a conditional probability model, where it is assumed that
a value of a particular feature is independent of the value of any other feature, and it is
considered to be particularly fast as compared to other more cutting-edge algorithms.

After selecting the classifiers, our dataset, containing 1043 observations, was divided
into 75% training data and 25% testing data for all of the models used for classification, and
also the random state was set to 42. In addition, the performance metrics accuracy rate and
cross-validation were used to assess the proposed model. Accuracy is the measure of how
reliable the predictions of the model are, and cross-validation is one of the techniques used
to test the effectiveness of machine learning models. After fitting the model and calculating
the accuracy, random forest, KNN, and naïve Bayes showed classification accuracies of
98.46%, 92.72%, and 95.01%, respectively. Also, the performance of the hard and soft
voting mechanisms was evaluated. The soft voting (probability-based voting) mechanism
showed better performance (96.55%) as compared to hard voting. Furthermore, for 10-fold
cross-validation, the proposed algorithm achieved accuracies of 95.90% for naïve Bayes,
94.11% for k-nearest neighbor, and 98.08% for random forest.

The genes annotated as pseudogenes in HGNC [33] were not included in the subse-
quent steps of the analysis.

https://bioinformatics.psb.ugent.be/webtools/Venn/
https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=factoextra
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2.6. Functional Enrichment Analysis

To explore biological functions associated with the common DEGs, gene set enrichment
analysis was conducted so as to identify relevant gene ontology (GO) terms that were
overrepresented in this gene set. To this end, the common DEGs were given as input
in WebGestalt (WEB-based GEne SeT AnaLysis Toolkit) [42,43] to identify statistically
significant enriched nonredundant GO biological process terms; the threshold for the
Benjamini and Hochberg (BH)-adjusted p-value [35] was set at 0.05.

2.7. Natural Language Processing

The keywords “covid-19” or “sars-cov-2” were used to search the biomedical liter-
ature database, MEDLINE/PubMed (https://pubmed.ncbi.nlm.nih.gov/; accessed on
22 February 2022) for scientific publications. Collectively, 149,055 abstracts were obtained,
and after the exclusion of publications written in non-English, those with insufficient text
for processing, and duplications, a total of 14,862 articles were retained. The abstract of
each article was extracted and stored as a JSON file. The spaCy model “en_core_sci_lg”
in the scispaCy Python package [44] was employed to retrieve the biomedical entities
from the dataset. Gene names were isolated from the processed text and were retained as
the final set of documents, containing 4012 articles, so as to define their significance and
semantic relationships.

TF-IDF (“Term Frequency-Inverse Document Frequency”), an information extraction
subtask, was utilized to signify the importance of the extracted genes in the document.
TF-IDF was implemented in Python 3.9.7 using the open-source library scikit-learn. The
top 50 genes with the highest tf-idf scores were selected for further analysis. Document
frequency, the number of occurrences of a term in a document set, was calculated for the
first 50 genes.

The gensim word2vec module implemented in Python 3.9.7 (Python Software Foun-
dation, Wilmington, DE, USA) (https://www.python.org/; accessed on 26 January 2022)
was used to train word vectors of the text, including gene names. Gene-to-gene distances
were extracted to calculate the similarity distances between each gene pair using the
word2vec.most_similar function. The semantic relations of the top 50 genes were detected
based on the similarity distances between each gene pair.

3. Results

The workflow of the present study is illustrated in Figure 1.

https://pubmed.ncbi.nlm.nih.gov/
https://www.python.org/
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Figure 1. Graphic illustration of the overall methodology of this study.

3.1. Identification of Differential Expression Patterns in SARS-CoV-2-İnfected vs. Healthy Tissues

In order to explore the transcriptional dynamics of the human host with respect to
SARS-CoV-2 infections, we profited from publicly available RNA-Seq datasets, which were
exploited to identify the DEGs of SARS-CoV-2-positive and –negative subjects. To this
end, the relevant gene expression data from six different tissues of SARS-CoV-2-positive
(COVID-19) and SARS-CoV-2-negative (control) individuals were processed and analyzed
by employing an integrated computational methodology.

The distribution of the COVID-19 and control samples in the blood and lung tissues
according to a principal component analysis is shown in Figure 2A. In the blood PCA plot,
three outlier samples were detected outside the circle (SRR11734755, SRR11734777, and
SRR11734781) which were not included in the subsequent steps of the analysis; similarly,
two outliers (SRR11772361 and SRR11772371) were detected in the lung PCA plot. After
the removal of the outliers, a total of 64 COVID-19 and 28 control samples were considered
for further analysis in the blood tissues, and, also, 12 COVID-19 and 5 control samples were
considered in the lung tissue (Table S1). The tissues of the heart, liver, kidney, and bowel
had a small number of samples (Table S1), and, thus, a methodology different from the one
used for the detection of DEGs in the blood and lung samples was applied.
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Figure 2. Genes differentially expressed between SARS-CoV-2-infected and control samples. (A) PCA
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COVID-19 and control samples are shown in salmon and turquoise colors, respectively. Each row
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colors, respectively. A dendrogram depicting hierarchical gene clustering (based on Z-scoring) is
shown on the left.

The number of statistically significant differentially expressed genes (DEGs) found in
the “COVID-19” and “control” groups per tissue was 223 (blood), 257 (lung), 403 (heart),
75 (liver), and 148 (bowel). No statistically significant DEGs were detected in the kidney
(Figure 2B and Table S2). The total number of unique DEGs across the tissues was 1003
(Table S2). Notably, no significant overlap was observed among the DEGs of the five tissues,
and also there were no common genes across all the tissues (Figure 3 and Table 1).

Table 1. Differentially expressed genes common across tissues and their functions.

Blood ∩ Lung Heart ∩ Bowel Bowel ∩ Lung Heart ∩ Lung Blood ∩ Bowel

H2BC5, H2BC7, H4C8,
IGKV2D-28, IGLV2-14,
KIF11, PFKFB3, UPP1

EIF3LP2, IL1RL1,
MINCR, RHBDF2,
S100A9, TPT1P5,

ZBTB42

CD300E, GK,
HILPDA, HK2, IER3,

PTX3, SNORA71C

FGG, H2AC16, H2AC18,
H2AC19, H2AC21, H2BC17,

H4C14, H4C2, HSPB6,
MT1XP1, SCARNA6,
SDCBP2-AS1, TLR2

CD38, G0S2, IGHA1, IGLC2,
IL18R1, TDRD9, TIMM10

Blood ∩ Heart Liver ∩ Lung Liver ∩ Bowel Blood ∩ Heart ∩ Lung Liver ∩ Heart

HMGB2, IGKC NDUFB1,
RNU6-1016P BCL2A1, MMP1 MKI67 PSMC1, ZNF524
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Table 1. Cont.

Gene Symbol Gene Name Function

BCL2A1 BCL2 related protein A1 An apoptosis-related gene and a direct target of the transcription
factor NF-κB in inflammatory responses.

CD300E CD300e molecule
It encodes a member of the CD300 family of cell surface receptors

expressed on myeloid cells, and it is implicated in the
modulation of immune responses.

CD38 CD38 molecule It is broadly expressed in immune system cells, facilitating
effective immune responses.

EIF3LP2 eukaryotic translation initiation factor 3 subunit
L pseudogene 2 Pseudogene with no known function.

FGG fibrinogen gamma chain It encodes a blood-borne glycoprotein suggested to contribute to
immune responses.

G0S2 G0/G1 switch 2 It is associated with cell cycle progression and innate immune
response.

GK glycerol kinase It encodes a protein implicated in the regulation of the uptake
and metabolism of glycerol that has diverse cellular functions.

H2AC16 H2A clustered histone 16 The encoded protein constitutes a core component of
nucleosomes, and it is expressed in B-cells.

H2AC18 H2A clustered histone 18 The encoded protein constitutes a core component of
nucleosomes, and it is associated with the immune system.

H2AC19 H2A clustered histone 19
The encoded protein constitutes a core component of

nucleosomes, and it is detected in all types of immune cells and is
expressed in neutrophils.

H2AC21 H2A clustered histone 21 The encoded protein constitutes a core component of
nucleosomes, and it is detected in many types of immune cells.

H2BC5 H2B clustered histone 5 The encoded protein constitutes a core component of
nucleosomes, and it is detected in all types of immune cells.

H2BC7 H2B clustered histone 7 The encoded protein constitutes a core component of
nucleosomes, and it is detected in some types of immune cells.

H2BC17 H2B clustered histone 17 The encoded protein constitutes a core component of
nucleosomes, and it is expressed in eosinophils.

H4C2 H4 clustered histone 2
The encoded protein constitutes a core component of

nucleosomes, and it is detected in many types of immune cells
and is expressed in neutrophils.

H4C8 H4 clustered histone 8 The encoded protein constitutes a core component of
nucleosomes, and it is expressed in eosinophils.

H4C14 H4 clustered histone 14 The encoded protein constitutes a core component of
nucleosomes, and it is detected specifically in neutrophils.

HILPDA hypoxia inducible lipid droplet associated It is implicated in various cellular processes, and it is associated
with immune cell infiltration.

HK2 hexokinase 2 The encoded protein catalyzes the phosphorylation of glucose to
glucose-6-phosphate, and it is an innate immune receptor.

HMGB2 High-mobility group box 2
It encodes a chromatin-associated protein, and it is proposed to

be implicated in the innate immune system response to
immunogenic nucleic acids.

HSPB6 heat shock protein family B (small) member 6 It encodes a small heat shock protein which serves as a molecular
chaperone.

IER3 immediate early response 3 It is involved in apoptosis and is associated with aberrant
immune response.

IGHA1 immunoglobulin heavy constant alpha 1 It is linked to receptor-binding activities.

IGKC immunoglobulin kappa constant It participates in antigen binding; it is associated with COVID-19
disease severity.

IGKV2D-28 immunoglobulin kappa variable 2D-28 Effector phase of humoral immunity modulator.
IGLC2 immunoglobulin lambda constant 2 Effector phase of humoral immunity modulator.

IGLV2-14 immunoglobulin lambda variable 2-14 It participates in antigen recognition.

IL18R1 interleukin 18 receptor 1 It encodes a cytokine receptor necessary for IL18 signaling; it is
associated with atherosclerosis.

IL1RL1 interleukin 1 receptor-like 1 The encoded protein serves as the receptor of IL33; it is
associated with fibrosis and heart failure.

KIF11 kinesin family member 11
It encodes a motor protein implicated in several aspects of

spindle dynamics, and it is considered a potential immunological
pan-cancer biomarker.

MINCR MYC-induced long noncoding RNA Immune-related long noncoding RNA.

MKI67 marker of proliferation Ki-67 It encodes a protein essential for cell proliferation, and it is
correlated with immune cell infiltration.
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Table 1. Cont.

MMP1 matrix metallopeptidase 1
It encodes a protein involved in extracellular matrix degradation

in pathophysiological processes, and it is related to cytokine
signaling pathways.

MT1XP1 metallothionein 1X pseudogene 1 Pseudogene with no known function.

NDUFB1 NADH:ubiquinone oxidoreductase subunit B1
It encodes a protein implicated in the assembly of the

mitochondrial respiratory chain complex I; it is involved in
inflammatory responses, and it is mainly expressed in monocytes.

PFKFB3
6-phosphofructo-2-kinase/fructose-2,6-

biphosphatase
3

It encodes a protein involved in the synthesis and breakdown of
fructose-2,6-bisphosphate.

PSMC1 proteasome 26S subunit, ATPase 1
It encodes one of the core subunits of the 19S proteasome

complex, and it is involved in immune responses and is detected
in all types of immune cells.

PTX3 pentraxin 3 It encodes a member of the pentraxin family of proteins, the
expression of which is elicited by inflammatory cytokines.

RHBDF2 rhomboid 5 homolog 2 It facilitates protein transporter activity, and it is correlated with
an immunosuppressive tumor microenvironment.

RNU6-1016P RNA, U6 small nuclear 1016, pseudogene Pseudogene with no known function.

S100A9 S100 calcium-binding protein A9

It encodes a member of the S100 protein family which is
implicated in the regulation of diverse cellular processes; it plays

a role in innate immunity and myeloid-derived
suppressor-cell-mediated immune suppression.

SCARNA6 small Cajal-body-specific RNA 6 Small nucleolar RNA which is associated with inflammatory
bowel disease.

SDCBP2-AS1 SDCBP2 antisense RNA 1 Long noncoding RNA.
SNORA71C small nucleolar RNA, H/ACA box 71C Small nucleolar RNA with no known function.

TDRD9 tudor domain containing 9 It has a potential role in RNA binding activity; it is involved in
inflammatory responses and is mainly expressed in monocytes.

TIMM10 translocase of inner mitochondrial membrane 10 It encodes a component of a protein complex in the
mitochondrial intermembrane space.

TLR2 Toll-like receptor 2 It encodes a member of the family of Toll-like receptors known to
play a critical role in the innate immune recognition of pathogens.

TPT1P5 TPT1 pseudogene 5 Pseudogene with no known function.

UPP1 uridine phosphorylase 1
The encoded uridine phosphorylase is involved in pyrimidine
ribonucleoside salvaging and degradation, and it is linked to

immune and inflammatory responses.
ZBTB42 zinc finger and BTB domain containing 42 It encodes a member of the family of C2H2 zinc finger proteins.

ZNF524 zinc finger protein 524

The encoded protein is predicted to regulate RNA polymerase II
transcription through sequence-specific DNA binding; it is

detected in all types of immune cells and is expressed in
eosinophils.
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Ensemble learning was applied to select the most important genes that were consis-
tently differentially expressed (i.e., up-/downregulated) across the five tissues. A total of
225 DEGs were detected in this way (Table S3). More impressively, among those genes,
contrary to the literature that has been published so far (based on our natural-language-
processing-aided thorough literature mining), the expression of the well-studied genes
associated with the COVID-19–mediated hyperinflammatory response, such as IL-6, TNF-α,
and IFN-γ, were found to be unchanged.

3.2. Pathway Enrichment Analysis of Common Selected DEGs

A gene set enrichment analysis was performed to identify overrepresented biological
processes in the “prominent” 225 DEGs. A single process was found to be statistically
significant which was related primarily to “neutrophil mediated immunity” (GO:0002446)
and included 16 genes (Table 2). Neutrophils constitute the most abundant type of white blood
cells, and they are essential effectors on the frontline of the host defense against attacking
pathogens [45]. Neutrophils contribute to the regulation of inflammation [46]. Recently, apart
from their antipathogenic and proinflammatory roles, neutrophils have been suggested to
have the ability to suppress the immune response via different mechanisms [47,48].

Table 2. Genes participating in the neutrophil-mediated immunity process and their corresponding
differential expression status in COVID-19. Up represents upregulated; down represents downregulated.

Gene Symbol Gene Name Expression

ALDOC aldolase, fructose-bisphosphate C Down
CD14 CD14 molecule Up

CEACAM1 CEA cell adhesion molecule 1 Up
CEACAM3 CEA cell adhesion molecule 3 Up

CYBA cytochrome b-245 alpha chain Up
DOCK2 dedicator of cytokinesis 2 Up
ENPP4 ectonucleotide pyrophosphatase/phosphodiesterase 4 Down
FABP5 fatty-acid-binding protein 5 Up

FCGR2A Fc gamma receptor IIa Up
GGH gamma-glutamyl hydrolase Up
HP haptoglobin Up

HVCN1 hydrogen voltage-gated channel 1 Up
IQGAP2 IQ motif-containing GTPase activating protein 2 Up
S100A9 S100 calcium-binding protein A9 Up
TLR2 Toll-like receptor 2 Down

TXNDC5 thioredoxin domain containing 5 Up

4. Discussion

Clinical complexity and heterogeneity were accounted amid the main problems physi-
cians and researchers had to resolve during the COVID-19 pandemic. Studies on the tissue-
specific distribution of genes and their corresponding products and expression are limited. Thus,
this investigation focused on the blood and soft tissue sample transcriptomes of COVID-19
patients. An in silico approach was employed with the data retrieved from NCBI’s GEO from
two previously published investigations by Galbraith et al. and Desai et al. [25,26].

Our findings revealed that, in the populations investigated, the SARS-CoV-2 infection’s
high levels of the characteristic “cytokine storm” and the known attachment contributors to
virus entry and tropism (angiotensin-converting enzyme 2 (ACE2), angiotensin II receptor
type 2 (AGTR2), alanyl aminopeptidase (ANP), ASGR1, Band3, dipeptidyl peptidase IV
(CD26), basigin (CD147), CLEC4G, KREMEN1, low-density lipoprotein receptor class A
domain-containing protein 3 (LDLRAD3), neuropilin 1 (NRP1), and transmembrane protein
30A (TMEM30A) [49]) were not expressed in any of the tissues examined herein. Given
that the source studies reported no demographic or clinical details of the population, it
was imperative for us to examine every option that might explain the cytokine, ACE2, and
other SARS-CoV-2 entry spike nonexpression in all the tissues reported, therein.
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It was established that the wide heterogeneity and complexity of COVID-19 lies mainly
in two factors: the “levels of cytokines” and “hypoxia” [50–52]. It was evidenced that pa-
tients living permanently in mountains manifested lower levels of IL-6 and TNF-α as
well as a lower morbidity and mortality [51–53]. The anti-inflammatory and cardiopro-
tective feature of higher-altitude locations has been attributed to the lower expression of
angiotensin-converting enzyme 2 (ACE2) in populations residing at such altitudes [54]
due to natural hypoxia and higher UVA and UVB exposure, which act as natural sani-
tizers by shortening any virus’s (such as SARS-CoV-2) half-life [55]. More interestingly,
the prevailing data did not provide any results of ACE2 expression in any of the tissues
involved. On the other hand, it was established that IL-6 was a key player in homeostasis
maintenance [56] as well as a proinflammatory biomarker and strong COVID-19 predic-
tor [17,57]. Although the hypothesis that “cytokines increase is involved in high altitudes
induced hypoxia” has been propounded [58], our results contradicted this theory, at least
in COVID-19 infection coexistence.

The absence of cytokines in the source studies was diverse in terms of seroepidemi-
ology; viz, the sero-low patients and sero-high patients showed diverse intrapatient and
interpatient virulence as well as diverse staging as reported by Galbraith et al. [26]. The
same study reported stage 1 patients among the population considered. This stage involves
asymptomatic carriers (according to the Centers for Disease Control and Prevention (CDC),
they account for 10–60% of the infected population (https://www.cdc.gov/coronavirus/
2019-ncov/hcp/planning-scenarios.html; accessed on 5 May 2022)), children, and young
adults [59]. This subpopulation is not susceptible to antiviral treatment, at least as long as
they do not pass into the symptomatic stage. Asymptomatic clinical images compared to
other respiratory diseases were discussed in the Mick et al. study in 2020 [60]. The results
were associated with a high viral load in the upper airway [61] and/or possible mono-
clonal antibody medication administration in the early stages [62]. Immunosuppressant
treatment, due to potential relevant comorbidities, such as sepsis, cancer, transplantation,
corticosteroids such as anti-inflammatories, renal failure, and chronic hemodialysis, might
be partly responsible for the proinflammatory blunt as well [62].

Sarma and colleagues (2021) challenged the cytokine storm model as well, particularly
in the lower airways of patients, and propounded dexamethasone as a treatment option [63].

Moreover, a recent study linked the photochemistry mechanism with the ethnicity
association to COVID-19 epidemiology (staging, virulence, and morbidity): “skin photo-
protection and reduced damaging pro-oxidative species from eumelanin photochemistry
may be linked to the increased severity of COVID-19 in dark skinned BAME (Black, Asian,
Minority ethnic), whilst in the fair- skinned patients, reactive oxygen species generated by
PM photolysis and rearrangement (in skin types I-III), unlike those of dark-skin type IV-V
and total absence in black skinned patients VI” [64]. In addition, according to the Centers
for Disease Control and Prevention (American CDC), the COVID-19 morbidity rate is
2.8 times higher in the Alaskan and Indian subpopulations; their fatality rate is half
(1.4) that of the Caucasians in the United States. This might partly explain the results of
Galbrraith et al. and Desai et al., as well as our results.

In a study by Remy and coworkers (2020) on critically ill COVID-19 patients [65],
a hypothesis diametrically opposed to the prevailing one was proposed, stating that
the severity of COVID-19 is rather due to the collapse of the host’s protective immune
system and a profound COVID-19-induced suppression of well-known cytokine-storm-
related genes as well as the depletion of the effector cells of the immune system, such as
CD3+/CD4+/CD8+ T and NK cells. In the same study, they suggested that the severe
immunosuppression accounted for the uncontrolled viral replication and spread, leading
to organ injury and host cytotoxicity. Several studies also support that COVID-19 patients are
more prone to secondary nosocomial-acquired infections [66–69]. This is mainly due to the
fact that the immune system is compromised and cannot prime a sufficient immune response.

The results of our study, in part, corroborated this hypothesis. Therefore, immunomod-
ulatory therapeutic strategies should be developed to boost the weakened host immune

https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
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response so as to eradicate SARS-CoV-2 and to eliminate infection. The administration of
anti-inflammatory effectors, such as IL-7, was shown to reverse lymphopenia and increase
CD4+/CD8+ T-cell proliferation in septic shock [70]. A further understanding of the in-
flammatory response in diverse populations would add to the implementation of better
and more specific/personalized therapeutic and preventive approaches. Future studies
evaluating larger samples, more cytokines, and their clinical impacts are of great need.

Neutrophil involvement was dominant in all the tissues studied herein, indicating
either that the population sampling had taken place in the primary stages or that a new
signaling pathway, meriting future investigation, is revealing.

Neutrophils are the frontline effectors of the innate immune system’s arsenal against
pathogen invaders such as SARS-CoV-2 [71]. On account of their having to effectively function
even in hypoxic circumstances, they have developed the sense of perceiving oxygen tensions
(through prolyl and asparaginyl hydroxylase enzymes that regulate the expression of the
hypoxia-inducible factors (HIFs)) [72] and have adapted their functionality through several
mechanisms, such as, for example, a heightened degranulation response [73,74]. Since the
transcription of effectors is required for HIF-driven processes to adapt to hypoxic environ-
ments, HIF-independent pathways might enable neutrophils to adapt to hypoxia more
quickly [75,76]. It was established that hypoxia-induced neutrophil degranulation through
granule exocytosis increased [76] irrespectively of HIF signalosomes but was reliant on
new and little-known protein synthesis [77]. This latter pathway was consistent with the
COVID-19 phenotype (similar to ARDS) but was inconsistent with our molecular findings
in the COVID-19 patients’ tissues. A nonmacrophage but HIF-independent neutrophil
granule exocytosis pathway was unraveled herein with a fan of involved proteins. The
molecules and mechanisms implicated in this pathway are unknown, and this study likely
shed light on the nodes involved: many proteins identified herein were differentially ex-
pressed either exclusively in certain tissues (listed in Table S2) or in all the tissues explored
herein (described in Table 1).

In an animal study, preconditioning protected infected and hypoxic mice from mor-
bidity and fatality, observed with acute hypoxia, through the suppression of HIF-driven
neutrophil activation (although the degranulation capacity was not assessed) and glucose
administration [78]. The hypoxia-enhanced neutrophil degranulation may be lethal, as
it may contribute to organ failure, organ damage, and unexpected systemic responses in
addition to host infection and local tissue damage [79]. In the literature, a plethora of
neutrophils has been established in the lungs [23], the blood [80–83], and the nasopha-
ryngeal epithelium [84] of severe COVID-19 patients with unspecified characteristics. A
transcriptomics-based patient stratification was introduced by Aschenbrenner et al. [85]; the
key severity-specific molecules dissected therein were not confirmed by our data analysis.
However, this phenomenon is additional proof of the disease’s heterogeneity.

Middleton et al. (2021) [86] explored the neutrophil extracellular traps (NETs) origi-
nating from decondensed chromatin released to immobilize SARS-CoV-2 and also able to
trigger immunothrombosis. That study suggested that these traps may represent COVID-19
therapeutic targets.

The limitations of our study were mainly due to the following factors:

• The patients’ characteristics (ethnicity, locality, and demographics) and clinical histo-
ries (comorbidities and medications administered prior to sampling) were unclear in
the source publications.

• The populations were small, and, hence, even if we knew the above characteristics, their
stratification into smaller clusters of epidemiological interest would be questioned.

• The hypoxia-enhanced neutrophil degranulation mechanisms’ proteins were little-known.
• The variability in sample preparation could also have impacted the sequence findings.

Future studies should focus on the epidemiology of neutrophil abundance, linking the
genomic and clinical data to the epidemiological clusters of patients, in comparison to that of
the ones manifesting cytokine storms and macrophage involvement. They should further make
an effort to decipher the neutrophil-neglected physiology with focused translational studies.
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We believe that our study was the first to provide robust human evidence of ethnicity,
locality, and clinical history, filling the gap in the relevant literature. Our investigation, by
elucidating the molecules involved, might contribute to the better clinical stratification of
COVID-19 patients, including the cytokine and virus entry spike expression, age, ethnicity,
and locality dependence of human immune responses to the virus invasion together with
the variety of the SARS-CoV-2 variants and the vaccine-induced immunity in a large part
of the population [87]. Finally, a wide ongoing scientific field is arising for researchers
to elucidate different neutrophil subpopulations and tailor them to current COVID-19
pathology uncertainties and patient heterogeneity.

5. Conclusions

In sum, neither macrophage involvement characterized by cytokine storms nor any
of the known viral entry cell surface proteins have been detected in any tissue studied
herein. On the contrary, immune dysregulation accounted for neutrophil abundance in all
the tissues derived from these specific COVID-19 patients under study. This population
may involve asymptomatic and/or immunosuppressed patients, children, and adolescents
as well as dark-skinned people and/or mountain residents. Our study also disputed the
simplicity of neutrophil population functionality, providing a fan of novel nodes to be
tailored to unsuspected neutrophil connections and functions in future studies. Finally, our
epidemiologic/omics study could contribute to “personalized medicine”.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/v15010104/s1, Table S1: Samples from each gene expression
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