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Abstract. The highly heterogeneous symptomatology and 
unpredictable progress of COVID‑19 triggered unprecedented 
intensive biomedical research and a number of clinical 
research projects. Although the pathophysiology of the disease 
is being progressively clarified, its complexity remains vast. 
Moreover, some extremely infrequent cases of thrombotic 
thrombocytopenia following vaccination against SARS‑CoV‑2 
infection have been observed. The present study aimed to map 
the signaling pathways of thrombocytopenia implicated in 
COVID‑19, as well as in vaccine‑induced thrombotic throm‑
bocytopenia (VITT). The biomedical literature database, 
MEDLINE/PubMed, was thoroughly searched using artificial 
intelligence techniques for the semantic relations among the 
top 50 similar words (>0.9) implicated in COVID‑19‑mediated 
human infection or VITT. Additionally, STRING, a database 
of primary and predicted associations among genes and 
proteins (collected from diverse resources, such as docu‑
mented pathway knowledge, high‑throughput experimental 
studies, cross‑species extrapolated information, automated 
text mining results, computationally predicted interactions, 
etc.), was employed, with the confidence threshold set at 0.7. 

In addition, two interactomes were constructed: i) A network 
including 119 and 56 nodes relevant to COVID‑19 and throm‑
bocytopenia, respectively; and ii) a second network containing 
60  nodes relevant to VITT. Although thrombocytopenia 
is a dominant morbidity in both entities, three nodes were 
observed that corresponded to genes (AURKA, CD46 and 
CD19) expressed only in VITT, whilst ADAM10, CDC20, 
SHC1 and STXBP2 are silenced in VITT, but are commonly 
expressed in both COVID‑19 and thrombocytopenia. The 
calculated average node degree was immense (11.9  in 
COVID‑19 and 6.43 in VITT), illustrating the complexity of 
COVID‑19 and VITT pathologies and confirming the impor‑
tance of cytokines, as well as of pathways activated following 
hypoxic events. In addition, PYCARD, NLP3 and P2RX7 are 
key potential therapeutic targets for all three morbid entities, 
meriting further research. This interactome was based on 
wild‑type genes, revealing the predisposition of the body to 
hypoxia‑induced thrombosis, leading to the acute COVID‑19 
phenotype, the ‘long‑COVID syndrome’, and/or VITT. Thus, 
common nodes appear to be key players in illness prevention, 
progression and treatment.

Introduction

The current SARS‑CoV‑2‑induced pandemic has raised 
a number of public health policy and scientific queries, 
related to the virus origin, transmission, activity, contamina‑
tion, pathophysiologic effects and treatment. As of May 3, 
2021, almost 188 million cases had been confirmed, while 
4.05 million deaths had been registered under the cause of 
death: ‘COVID‑19’. Although this may underline an apogee of 
the third phase of the pandemic in some countries, or may have 
been the result of certain interventions. Public health policy 
approaches, communication campaigns, pharmacological 
approaches, surveillance, and prevention practices have been 
suggested.

The highly varying symptomatology and the unpre‑
dictable global progress of COVID‑19 have triggered an 
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unprecedentedly intensive activity in biomedical research 
and public policy decisions. Furthermore, although the patho‑
physiology of the disease is being progressively clarified, its 
complexity remains vast, and preventive care approaches or 
treatments, although both have significantly improved, remain 
unsatisfactory.

Notably, the extremely rare yet highly unpredictable and 
occasionally lethal vaccination‑induced thrombotic thrombo‑
cytopenia (VITT) syndrome has emphasized the gaps in the 
current knowledge of certain unsuspected pathophysiological 
pathways. The VITT morbid entity is of particular importance 
given the generally mild and to a certain extent expected 
vaccination side‑effects, namely chills, fever, diarrhea, 
fatigue, muscle pain, headache and mildly increased blood 
coagulability (1,2). As of April 2021, 16 vaccination options 
were available: Two RNA vaccines [BNT162b2 (Comirnaty) 
by Pfizer‑BioNTech, mRNA.1273 (Spikevax) by Moderna], 
seven conventional inactivated ones (CoronaVac, Covaxin, 
BBIBP‑CorV, WIBP‑CorV, Minhai‑Kangtai, QazVac, CovIran 
Bakerat), five viral vector‑employing ones (Covishield and 
Vaxzevria by Oxford Astra‑Zeneca, the Janssen COVID‑19 
vaccine by Johnson & Johnson, the Sputnik V and Sputnik 
Light by the Gamaleya Research Institute of Epidemiology 
and Microbiology in Russia, and the AD5‑nCOV‑Convidencia 
by CanSino Biologics Inc.), and two protein subunit vaccines 
(EpiVacCorona and RDB‑dimer). Vaccination programs have 
been implemented so as to reach ‘herd immunity’, in every 
country. According to national health authority reports, as of 
August 30, 2021, 5.27 billion doses had been administered 
globally. This is equal to 39.7% of the population on the planet 
(where, however, only 1.6% of individuals in the low‑income 
countries had received at least one dose), having been fully 
vaccinated (3). As of August 30, 2021, 55.15% of the Greek 
population had been fully vaccinated (3).

The aim of the present study was to illustrate the signaling 
pathways implicated in SARS‑CoV‑2 infection, including 
those of the extremely rare, yet severe VITT syndrome.

Data and methods

The scientific literature database, MEDLINE/PubMed 
(https://pubmed.ncbi.nlm.nih.gov/), was searched thoroughly 
for genes or gene products implicated in COVID‑19 infec‑
tion and VITT syndrome. Searches were conducted in the 
PubTator article collection  (4) (https://www.ncbi.nlm.nih.
gov/research/pubtator/) from the LitCovid database  (5), 
using i)  (‘COVID19’ OR ‘SARS‑CoV‑2’) AND (‘VITT’ 
OR ‘vaccine‑induced thrombotic thrombocytopenia’); 
ii)  (‘COVID19’ OR ‘SARS‑CoV‑2’) AND (‘thrombocyto‑
penia’ OR ‘thrombopenia’) key words to obtain relevant 
articles. Of the 495 candidate articles, 190 met the inclusion 
criteria which were as follows: i) written in English; ii) include 
an abstract; and iii) contain adequate information in their text 
for processing (Fig. 1).

The natural language toolkit (NLTK: https://www.nltk.org/), 
a freely accessible Python platform, was used for text processing, 
including tokenization, parsing and stemming. Word2vec 
embeddings module in the open‑source Python library Gensim 
(https://pypi.org/project/gensim/) was implemented to train 
word vectors of processed text. A list of all word‑to‑word 

distances was extracted. To calculate the similarity distances 
between each word pair, the Word2Vec.most_similar function 
in Gensim Word2vec model was used. The top 50 detected 
entries were included in the present study. The work flow is 
presented in Fig. 1. The search results are illustrated in Fig. 2.

Furthermore, the interactions among the retrieved 
genes/proteins were investigated by employing the Search Tool 
for Retrieval of Interacting Genes/Proteins (STRING) database 
v11.0 (6,7), a database containing both primary and predicted, 
physical and functional association data among genes or 
proteins. These data are collected from diverse resources, 
such as documented pathway knowledge, high‑throughput 
experimental studies, cross‑species extrapolated information, 
automated text mining results, computationally predicted 
interactions, etc. The confidence threshold value for displaying 
interactions was set to ‘high’ (i.e., 0.7). The interactions in 
the generated network were manipulated and visualized 
through Cytoscape (http://www.cytoscape.org/) (8), a software 
platform for network processing and statistical analyses; the 
Edge Betweenness mode was used to detect the number of the 
shortest paths that pass‑through a given edge in the COVID‑19 
network.

Results

Main findings. The constructed networks presented in Fig. 2 
provide noteworthy information on how diverse terms are 
closely interlinked within the context of thrombocytopenia 
induced by SARS‑CoV‑2 infection or through vaccination. The 
term thrombocytopenia appears with a rather high frequency 
in the COVID‑19/VITT network (Fig.  2A). Similarly, the 
term VITT is included in the COVID‑19/thrombocytopenia 
network (Fig. 2B). COVID‑19 and VITT share several comor‑
bidities implicating vascular and epithelial dysfunction and 
thrombocytopenia. The nodes represent the top 50 words with 
a cosine similarity score of each word vector >0.9.

Interactome construction. Subsequently, two interactomes 
were constructed: The first one involving 119 nodes is described 
in Table I and illustrated in Fig. 3. Collectively, 119 nodes are 
involved in COVID‑19, while 57 are implicated in thrombo‑
cytopenia [the latter profits from an unpublished work of ours 
(unpublished data). Of these, 14 nodes were common in both 
entities (Figs. 3 and 4), namely AIM2, IFI16, NOD2, CD8A, 
IL‑1B, 1L‑6, JAK2, NCAM1, HLA‑DRB1, SERPINE1, 
TGFB1, TLR2, TNF and VWF. The major hubs detected are 
displayed in the center of the constructed circular network, 
while the less connected nodes are shown at the periphery of 
the circle (Fig. 3). The thrombocytopenia‑related nodes are 
represented in square bullets, and the COVID‑19‑related ones 
are presented in circles, whilst the common nodes are depicted 
in rhomboids. The calculated average node degree of the entire 
interactome was extremely high (11.9).

The second one including 61 molecules, is described in 
Table I and illustrated in Fig. 5. Of these, 47 are common 
with thrombocytopenia (indicated by a polygon), and 16 with 
COVID‑19 (represented by circles). The VITT‑related mole‑
cules are denoted with triangles.

Venn diagrams were further created to illustrate the nodes 
that are common between thrombocytopenia and COVID‑19 
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or VITT (Fig. 4A and B, respectively), between COVID‑19 and 
VITT (Fig. 4C), and amid the three morbid entities (Fig. 4D). 
The common nodes are listed in each diagram in detail.

All included molecules herein are listed in Table I. The 
figure (network) in which each molecule is implicated is also 
noted in a separate column in Table I.

Discussion

Epidemics were already identified as entities in antiquity 
by Hippocrates and named by him in his Treatises ‘On 
Epidemics’ (9,10). Viral epidemics were described therein and 
in other works of the Hippocratic Corpus (11,12). On the other 
hand, Aristotle, the ancient Greek physician and philosopher 
(4th century B.C.) wrote that ‘the creativeness of nature focuses 
on qualities rather than quantities and description rather than 
measurements’ (13,14). This concept was rejected by Newton's 
determinism and reductionism and was since forgotten, until 
it was re‑established by Wulff in 1999 (15). Indeed, subtle 
change in qualities may trigger phase shift alterations with 
unpredictable consequences, as the Chaos theory of dynamic 
systems recently confirmed (16). According to this concept, 
the systems theory was coined as representing a rapid, cost 
and time‑effective method of research (17). It may integrate 
basic, preclinical and clinical research, and both human and 
animal results to unravel new insights in complex and often 
unpredictable issues. In the case of the COVID‑19 pandemic, 
the urgency, and certain ethical issues, make such an in silico 
approach a sine qua non research method.

The human‑to‑human transmission of SARS‑CoV‑2 is 
either mediated by respiratory droplets via sneezing/coughing 
or even just breathing, while the disease demonstrates an 
incubation period of 5‑7 days (18). The clinical outcomes range 
from asymptomatic to influenza‑like, or to even pneumonia and 
severe acute respiratory distress syndrome (ARDS) (19), and 
thromboembolic events (20,21), pointing to the lung tropism of 
this virus. Dissimilarities in patients' profiles are attributed to 
genetic and/or epigenetic variations and underlying pathologies. 
Dissimilarities in severity may be attributed to the aforemen‑
tioned factors, but also to the size of the viral inoculum and/or 
viral mutations.

COVID‑19 and the thrombocytopenia interactions network. 
Ariadne's thread appears to be the angiotensin I converting 
enzyme  2 (ACE2), which clearly plays a crucial role. 
SARS‑CoV‑2, via its spike S protein, a surface glycoprotein 
that surrounds the spherical virus, is attached to ACE2 and 
this is followed by entry into cells of the host (22‑27). ACE2 is 
expressed in cells of a number of human organs (including the 
skin, nasal and oral mucosa, lung, nasopharynx, brain, lymph 
nodes, thymus, stomach, small intestine, colon, bone marrow, 
spleen, liver and kidneys). Additionally, its expression in lung 
alveoli (type 2 pneumonocytes) and small intestine endothe‑
lium, as well as in the arterial and other tissue smooth muscle 
epithelium (28), may trigger the release of anaphylatoxin (29). 
There is clinical evidence to confirm the aforementioned 
knowledge of COVID‑19 (29).

In the generated network illustrated in Fig. 2, ACE2 inter‑
acts with CYP11B2 and with IL‑6. The latter is the greatest 
hub in this vastly interconnected network, with 63 interactions, 
confirming that the progress of SARS‑CoV‑2‑induced infection 
would profit from therapeutic blockade of IL‑6. As noted by 
Mazzoni et al (24), blocking this mechanism would ‘suppress 
noxious systemic inflammation but also restore the protective 
antiviral potential’. It has been established that innate immunity 
via natural killer (NK) cells exerts the frontline defense, with 
CD8+ T‑lymphocytes being important for the long‑term surveil‑
lance against viruses, while adaptive immune responses play a 
key role in the control of viral infections (28). Both responses 
are mediated either via cytotoxicity or by IF‑γ, IL‑12 and IL‑18. 
Virus‑induced cytotoxicity is primarily moderated by perforin 
and granzymes. Increased severity in viral infections may 
lead to dysregulated immunity and tissue/organ damage (30). 
Clinical evidence in SARS‑CoV‑2 infection has demonstrated 
that high IL‑6 levels in patients in intensive care units, are 
inversely associated with the concentration of NK cells (24,31).

The network included dense interactions illustrating clearly 
that SARS‑CoV‑2‑specific T‑cells are critical for the extended 
damage caused by the ‘cytokine storm’ (or ‘cytokine release 
syndrome’)  (30,32) (Fig.  3). This excessive inflammatory 
response may be lethal for some patients (29,33). Although the 
phenomenon may manifest in other inflammatory conditions, 
including bacterial sepsis, pneumonia, sterile inflammation, 
etc., the extent in the secretion of several specific cytokines is 
different in COVID‑19‑related storm (29). Of note, COVID‑19 
infection has been associated with changes in the blood coagu‑
lation mechanisms, with differing manifestations in different 
patients, in distinct phases of the disease, and independently of 
disease severity.

Figure 1. Flowchart of the process followed for the acquisition of eligible 
articles containing relevant data.
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Autoimmune destruction of platelets, cytokine release 
and high consumption of coagulation factors and platelets 
have been observed in patients with SARS‑CoV‑2 infec‑
tion  (Geronikolou  et  al, unpublished data) and initial 
hypercoagulability (34). Thromboembolic events increase by 
31% in patients with COVID‑19 admitted in intensive care 
units  (35,36); the phenomenon may be interpreted by the 
‘two way activation theory’ (20,37), i.e., thrombogenesis via 
inflammation‑relevant pathways, with parallel occurrence of 
release of VWF large polymers. The coagulation and platelet 
profiles of patients with COVID‑19 are then rather normal, 
unlike in patients with sepsis where platelets are activated 
and consumed, with the occurrence of thrombocytopenia (38). 
Only a few patients may then survive, particularly of those 
with extensive disseminated intravascular coagulation (38). 
Thrombosis has been observed in situ in the lungs, as well 
as in a systemic manner, in a similar fashion with classic 
sepsis and acute respiratory distress syndrome. Reported 
thromboembolic complications include mostly venous pulmo‑
nary embolism (38), aortic graft thrombosis, and mesenteric 
ischemia; coronary and cerebral thrombosis cases have been 
reported, although these are rare. The so‑called ‘COVID toe’ 
is a sign of thrombosis accompanied by arterial and venous 
clots, urgent oxygen demand and multiple organ dysfunc‑
tion (20,36,39).

COVID‑19 and thrombocytopenia interactomes share only 
14 nodes (AIM2, IFI16, TLR2, NOD2, NKAM1, IL‑6, TNF, 
JAK2, IL‑1B, SERPINE1, HLA‑DRB1, TGFB1, CD8A, and 
VWF) (Fig. 3), most of which serve as major hubs (IL‑6, TNF, 
JAK2, IL‑1B, SERPINE1, TGFB1, CD8A and VWF) in the 
herein presented interactome (Figs. 1 and 2).

Cytokines, such as IL‑1B, 1L‑6 and TNF contribute to the 
so‑called cytokine storm, as aforementioned. Moreover, JAK2 
is a kinase suspected to be implicated in thrombocytopenia via 
reduced levels of thrombopoietin or via decreased expression 
levels of their cognate receptors (cMpl receptors). JAK2 muta‑
tions (V617F) that are present in the majority of patients with 

myeloproliferative disease, may increase hematopoietic cell 
sensitivity to erythropoietin and thrombopoietin. NKAM1 or 
CD56 is a homophilic binding glycoprotein expressed on the 
surface of neurons, glia cells and skeletal muscles. NKAM1 is 
a prototypic marker of NK cells, also present in CD8+ T‑cells. 
These cell types exhibit diminished antiviral ability and cyto‑
toxic impairment during COVID‑19 infection (24). CD8A1 
is a cytotoxic marker for T‑cell populations. SERPINE1 or 
plasminogen activator inhibitor‑1 is a protein encoded by the 
SERPINE1 gene, which participates in both thrombosis and 
atherogenesis (40).

TGFB1 is a multifunctional peptide, with diverse activities, 
including the control of cell growth, proliferation, differentia‑
tion, and apoptosis. It can also down‑regulate the activity of 
immune cells via decreasing the expression levels of cytokine 
receptors, such as that of IL‑2. Several types of T‑cells secrete 
TGFB1, so as to inhibit cytotoxicity and the secretion of certain 
cytokines, such as interferon‑γ, TNF‑α and various interleu‑
kins, such as IL‑6. This makes this molecule a potential target 
of therapeutic value. On the other hand, the hemostatic VWF 
is detected in blood plasma, endothelium and megakaryocytes, 
as well as in subendothelial connective tissue. This factor 
appears to be also increased and implicated in autoimmune 
diseases, such as thrombotic thrombocytopenic purpura, as 
well as in stroke and atrial fibrillation, due to the platelet clots 
that are potentially formed when its levels are elevated.

Recent literature has further revealed that an HLA class I 
and II molecule, that is, HLA‑DRB1, which is common in 
COVID‑19 and in thrombocytopenia networks (Fig. 2), may 
play a role in the observed COVID‑19 individual and ethnic 
diversity in clinical severity and/or response to therapy or 
vaccination (41‑44). Of note, HLA‑DRB1 is interconnected 
with the lymphocyte function markers CD3D, CD3E, CD3G, 
CD4, lymphocyte regulation positive FCGR1A, FCGR1B, 
HLA class I and II molecules, such as HLA‑A, HLA‑B, 
similar to the NCAM1, PTPN1, SHC1 and VCAM1 molecules 
that have been implicated in thrombosis and atherosclerosis. 

Figure 2. Networks depicting the semantic relations of the top 50 most similar words to the query (A) COVID‑19 or VITT, and (B) thrombocytopenia. Only 
those word pairs with a cosine similarity score of each word vector >0.9 are shown. The nodes represent the words and the edges denote the semantic associa‑
tions between them. The size of the nodes indicates the frequency of occurrence of the given term. VITT, vaccine‑induced thrombotic thrombocytopenia.
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Table I. Genes included in the molecular networks depicted in Figs. 3 and 4.

Gene symbol	 Gene name	 Main function with brief description (Refs.)	 Figure(s)	 Entitya

ACE2	 Angiotensin I converting enzyme 2	 Transmembrane protein‑entry point of	 3	C
		  SARS‑CoV‑2 (22‑24,28)		
ADAM10	 ADAM metallopeptidase	 Sheddase with strong specificity for peptide	 3	 T
	 domain 10	 hydrolysis reactions (68‑70)		
ADAM17	 ADAM metallopeptidase	 Sheddase triggering release of cytokines	 3,4	 V, T
	 domain 17	 receptors, ligands, etc. (68,69,71)		
ADAMTS13	 ADAM metallopeptidase with	 Enzyme that cleaves von Willebrand	 3,4	 V, T
	 throm bospondin type 1 motif 13	 factor (68,69)		
ADRA2C	 Adrenoceptor alpha 2C	 Mediators in catecholamine‑induced inhibition	 3	C
		  of adenylate cyclase through the action of		
		  G proteins (72)		
ADRB1	 Adrenoceptor beta 1	 Renin release/lipolysis/Increases heart rate	 3	C
		  with chrono/inotropic effect (73)		
ADRB2	 Adrenoceptor beta 2	 Facilitating respiration (74)	 3	 C
AGER	 Advanced glycosylation 	 Mediates interactions of advanced glycosylation	 3	C
	 end‑product specific receptor	 end products (75)		
AIM2	 Interferon‑inducible protein AIM2	 AIM2 inflammasome plays a crucial role in the	 3	 C, T
		  defense against viral infection (76)		
ANGPT1	 Angiopoietin 1	 Receptor of advanced glycosylation end products	 3	C
		  of proteins, mediating amyloid beta peptide		
		  effect on neurons and microglia (77)		
ANGPT2	 Angiopoietin 2	 Binds to TEK/TIE2, competing for the ANGPT1	 3	C
		  binding site, and modulating ANGPT1		
		  signaling (78)		
AURKA	 Serine/threonine‑protein kinase 6	 Orchestrate an exit from mitosis by contributing	 4	 V
		  to the completion of cytokinesis the process		
		  through which the cytoplasm of the parent cell		
		  is split into two daughter cells (79)		
C4B	 Complement C4B	 Mediator of local inflammatory process, inducing	 3,4	 V, T
	 (Chido blood group)	 the contraction of smooth muscle, increasing		
		  vascular permeability and causing histamine		
		  release from mast cells and basophilic		
		  leukocytes (80)		
C5	C omplement C5	 Involved in the complement system (81)	 3,4	 V, T
C6	C omplement C6	C auses cell lysis (82)	 3,4	 V, T
C7	 Complement C7	 Creates a hole on pathogen surfaces leading to	 3,4	 V, T
		  cell lysis (82)		
C9	C omplement C9	C ell lysis and death contributor (82)	 3,4	 V, T
CASP1	 Caspase 1	 Inflammatory response initiator (83)	 3,4	 C, V
CASP10	C aspase 10	C ell apoptosis (84)	 3	C
CASP9	C aspase 9	 Innate immunity, mitochondrial apoptosis (85)	 3	C
CCL2	C ‑C motif chemokine ligand 2	 Induces a strong chemotactic response and	 3	C
		  mobilization of intracellular calcium ions (86,87)		
CCL3	C hemokine (C‑C motif) ligand 3	 Pyrogenic, attracting macrophages, monocytes	 3	C
		  and neutrophils (88)		
CCN2	C ellular communication network	C ell adhesion, apoptosis, migration, proliferation, 	 3	C
	 factor 2	 differentiation, apoptosis, survival and		
		  senescence (89)		
CD3D	CD 3d molecule	C ell differentiation and adaptive immune	 3	C
		  response (90)
CD3E	CD 3e molecule	C ell differentiation and adaptive immune	 3	C
		  response (90)		
CD3G	CD 3g molecule	C ell differentiation and adaptive immune	 3	C
		  response (90)		
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Table I. Continued.

Gene symbol	 Gene name	 Main function with brief description (Refs.)	 Figure(s)	 Entitya

CD4	CD 4 molecule	C ell differentiation and adaptive immune	 3	C
		  response (91)		
CD40LG	CD 40 ligand	 Acts as a ligand for integrins which have cell‑type	 3	 T
		  dependent effects, such as B‑cell activation, 		
		  NF‑κB signaling and anti‑apoptotic		
		  signaling (92,93)		
CD8A	CD 8a molecule	 Multiple functions in responses against both	 3	C , T
		  ex/internal offenses (91)		
CD19	 B‑lymphocyte antigen CD19	D ecreases B‑cell receptor pathways (94,95)	 4	 V
CD40LG	 Cluster of differentiation 40	 Mediates many immune and inflammatory	 3,4	 T, V
		  responses including T‑cell‑dependent		
		  immunoglobulin class switching, memory B cell		
		  development, and germinal center formation (96)		
CD46	CD 46 complement regulatory	 Activates T‑lymphocytes following	 4	 V
	 protein	 vaccination (97,98)		
CDC20	C ell division cycle 20	 Regulates the formation of synaptic vesicle	 3,4	 V, T
		  clustering at active zone to the presynaptic		
		  membrane in post‑mitotic neurons; Cdc20‑apc/		
		  c‑induced degradation of neurod2 induces		
		  presynaptic differentiation (91)		
CDCA3	 Cell division cycle associated 3	 Involves in protein ubiquitination (99)	 3,4	 V, T
CRP	C ‑reactive protein	 Mitotic initiator (100)	 3	C
CSF1R	 colony stimulating factor 1	C ontrols the production, differentiation, and	 3,4	 V, T
	 receptor	 function macrophages (93,101)		
CSF2	 colony stimulating factor 2	C ytokine affecting mostly eosinophils and	 3,4	 V, T
		  macrophages (102)		
CXCL10	C ‑X‑C motif chemokine ligand 10	C hemoattraction for T‑ and NK cells, 	 3	C
		  monocytes (87,93,103,104)		
CXCL8	C ‑X‑C motif chemokine ligand 8	 Neutrophil chemotactic factor increasing	 3,4	C , V
		  respiratory burst (87,105)		
CYP11B2	 Cytochrome P450 family 11	 Aldosterone synthesis (87,106)	 3	 C
	 subfamily B member 2			 
CYP2C19	 Cytochrome P450 family 2	 Part of cytochrome P450, involved in drug and	 3	C
	 subfamily C member 19	 lipid metabolism (107)		
CYP2C9	 Cytochrome P450 family 2	 Part of cytochrome P450, involved in drug and	 3	C
	 subfamily C member 9	 lipid metabolism (107)		
DDX58	 Retinoic acid‑inducible gene I	 Activates interferon and cytokines production	 3	C
		  after viral infection (108)		
EDN1	 Endothelin 1	 Potent vasoconstrictor (106,109)	 3	C
EPO	 Erythropoietin	 Stimulation of erythropoiesis, vasoconstriction, 	 3,4	 V, T
		  angiogenesis (106)		
F2	C oagulation factor II, thrombin	 Activates the coagulation cascade inhibition (110)	 3,4	 V, T
FCGR1A	 Fc fragment of IgG receptor Ia	 Complex activation or inhibitory effects on cell	 3,4	 V, T
		  functions (111)		
FCGR1B	 Fc fragment of IgG receptor Ib	 Humoral immune response (112)	 3,4	 V, T
FCGR2A	 Fc fragment of IgG receptor IIa	 Humoral immune response to pathogens, 	 3,4	 V, T
		  phagocytosis of opsonized antigens (113)		
FCGR2B	 Fc fragment of IgG receptor IIb	 Phagocytosis of immune complexes and	 3,4	 V, T
		  regulation of antibody production (114)		
FCGR3A	 Fc fragment of IgG receptor IIIa	 Mediates antibody‑dependent cellular cytotoxicity	 3,4	 V, T
		  and phagocytosis (115)		
FCGR3B	 Fc fragment of IgG receptor IIIb	 Captures immune complexes in the peripheral	 3,4	 V, T
		  circulation (116)		
FGF7	 Fibroblast growth factor 7	 Cell growth, morphogenesis and tissue	 3,4	 C, V
		  repair (117)		
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Table I. Continued.

Gene symbol	 Gene name	 Main function with brief description (Refs.)	 Figure(s)	 Entitya

FKBP1A	 FKBP prolyl isomerase 1A	 Immunoregulation and basic cellular processes	 3,4	 V, T
		  involving protein folding and trafficking (118)		
FN1	 Fibronectin 1	 Cell growth, morphogenesis and tissue repair (70)	 3	 C
FOS	 Fos proto‑oncogene, AP‑1	 Signal transduction, cell proliferation and	 3	C
	 transcription factor subunit	 differentiation (119)		
GNB3	 G protein subunit beta 3	 Integrates signals between receptor and effector	 3	C
		  proteins (120)		
GZMA	 Granzyme A	C ommon component necessary for lysis of target	 3	C
		  cells by cytotoxic T‑lymphocytes and natural		
		  killer cells (24)		
GZMB	 Granzyme B	 Recognize specific infected target cells (121)	 3	 C
GZMH	 Granzyme H	 Suppresses viral replication (122)	 3	C
HLA‑A	 Major histocompatibility 	 Sole link between the immune system and what	 3,4	C , V
	 complex, class I, A	 happens inside cells (123)		
HLA‑B	 Major histocompatibility 	 Helps the immune system distinguish the	 3,4	C , V
	 complex, class I, B	 endo‑from exogenous proteins (123)		
HLA‑DRB1	 HLA class II histocompatibility	 Triggers response to viral infections (41)	 3,4	C , V, T
	 antigen, DRB1 beta chain			 
ICAM1	 Intercellular adhesion molecule 1	 Signal transduction (92,93)	 3,4	 V, T
IFI16	 Interferon gamma inducible	 Recognizes RNA viral infection, enhancing	 3	C , T
	 protein 16	DD X58 production (124)		
IFNA1	 Interferon alpha 1	 Antiviral and immunomodulator (125)	 3	C
IFNG (IFN‑γ)	 Interferon gamma	 Antiviral antibacterial and immunomodulatory	 3,4	 V, T
		  effects (104)		
IFNL1	 Interferon lambda 1	 Antiviral antibacterial and immunomodulatory	 3	C
		  effects (126)		
IFNL2	 Interferon lambda 2	 Antiviral antibacterial and immunomodulatory	 3	C
		  effects (126)		
IFNL3	 Interferon lambda 3	 Antiviral antibacterial and immunomodulatory	 3	C
		  effects (126)		
IFNLR1	 Interferon lambda receptor 1	 Antiviral antibacterial and immunomodulatory	 3	C
		  effects (126)		
IKBKG	 Inhibitor of nuclear factor kappa B	 Antiviral activity through JAK/STAT signaling	 3	C
	 kinase regulatory subunit gamma	 activation (127)		
IL10	 Interleukin 10	 Multiple, pleiotropic effects in immunoregulation, 	 3	C
		  limits excessive infected tissue disruption (92)		
IL10RB	 Interleukin 10 receptor subunit beta	 JAK1 and STAT2‑mediated phosphorylation of	 3	C
		  STAT3 (128)		
IL12A	 Interleukin 12A	 Induces IFNG (92)	 3	C
IL12B	 Interleukin 12B	 Induces IFNG by resting PBMC (92)	 3	C
IL17A	 Interleukin 17A	 Mediates protective innate immunity to pathogens	 3	 C
		  or contributes to pathogenesis of inflammatory		
		  diseases (87)		
IL18	 Interleukin 18	 Potent inducer of inflammatory cytokines, 	 3	 C
		  especially IFNG (129)		
IL1A	 Interleukin 1 alpha	 Promotion of intimal inflammation, fever, sepsis	 3	 C
		  and atherogenesis (41)		
IL1B	 Interleukin 1 beta	 Promotion of fever, development of diabetes	 3,4	C , V, T
		  mellitus, apoptosis of pancreatic β‑cells (87,105)		
IL1RAP	 Interleukin 1 receptor accessory	 Induces synthesis of acute phase and	 3	C
	 protein	 proinflammatory proteins during infection, 		
		  tissue damage, or stress (130)		
IL3	 Interleukin 3	 Growth and differentiation of hematopoietic	 3,4	 V, T
		  progenitor cells regulator and functional activator		
		  of mature neutrophils or macrophages (131)		



GERONIKOLOU et al:  THROMBOCYTOPENIA VS. COVID-19 AND VITT8

Table I. Continued.

Gene symbol	 Gene name	 Main function with brief description (Refs.)	 Figure(s)	 Entitya

IL33	 Interleukin 33	 Gene transcription regulator, released after cell	 3	C
		  necrosis triggering immune response and		
		  stress (132)		
IL36G	 Interleukin 36 gamma	 Inflammasome dependent, involved in systemic	 3	 C
		  inflammation (133)		
 IL4	 Interleukin 4	 Hematopoiesis, antibody production, 	 3,4	 V, T
		  inflammation response (117)		
IL5	 Interleukin 5	 Eosinophil migration, activation survival (134)	 3,4	 V, T
IL6	 Interleukin 6	 Innate and adaptive immune response to	 3,4	C , V, T
		  infections (135)		
INS	 Insulin	 Blood sugar regulator (136)	 3	C
ITGA2B	 Integrin subunit alpha 2b	 Coagulation (137,138)	 3,4	 V, T
JAK1	 Janus kinase 1	C ell growth survival, development differentiation	 3	C
		  of various cell types (139)		
JAK2	 Janus kinase 2	C ell growth and proliferation (139)	 3	C , T
JUN	 Jun proto‑oncogene, AP‑1	 Gene expression regulator (92)	 3	 C
	 transcription factor subunit			 
KCNE1	 Potassium voltage‑gated channel	 Potassium channels regulator (140,141)	 3	C
	 subfamily E regulatory subunit 1			 
KCNH2	 Potassium voltage‑gated channel	 Electrical signals transmission (141)	 3	C
	 subfamily H member 2			 
KCNJ2	 Potassium inwardly rectifying	 Muscle movement (heart or skeletal) (142)	 3	C
	 channel subfamily J member 2			 
KCNQ1	 Potassium voltage‑gated channel	 Electrical signals generation and	 3	C
	 subfamily Q member 1	 transmission (143)		
LCN2	 Lipocalin 2	 Sequesters iron and preventing its use by bacteria, 	 3	 C
		  thus limiting their growth (144)		
MMP1	 Matrix metallopeptidase 1	 Degrades collagen type I and II (145,146)	 3	 C
MMP2	 Matrix metallopeptidase 2	 Extracellular matrix (146)	 3	 C
MPL	 MPL proto‑oncogene, 	 Proliferator of cells involved in blood	 3,4	 V, T
	 thrombopoietin receptor	 clotting (147)		
MS4A1	 Membrane spanning 4‑domains A1	 Regulator of cellular calcium influx necessary	 3,4	 C, V
		  for the B‑lymphocytes activation (148)		
MS4A3	 Membrane spanning 4‑domains A3	 Marker of immature circulating neutrophils, 	 3	C
		  a cellular population associated to COVID‑19		
		  severe disease (148)		
MUC1	 Mucin 1, cell surface associated	 High viscosity of airway mucus and sputum	 3	C
		  retention in the small airway of COVID‑19		
		  patients (149)		
MYD88	 MYD88 innate immune signal	 Initiates early immune responses (150)	 3	 C
	 transduction adaptor			 
NCAM1	 Neural cell adhesion molecule 1	 Molecular mimicry between NCAM‑1 and the	 3	C , T
		  SARS‑CoV‑2 envelope protein (151)		
NFAT5	 Nuclear factor of activated T‑cells 5	 Protects cells against harmful effects of	 3	C
		  stress (137)		
NFATC1	 Nuclear factor of activated T‑cells 1	 Transcription factor (137)	 3,4	 C, V
NFATC2	 Nuclear factor of activated T‑cells 2	 Neuroinflammatory factor (137)	 3	 C
NFATC3	 Nuclear factor of activated T‑cells 3	 Involved in proliferation of human pulmonary	 3	C
		  fibroblasts after hypoxic stimulus (137)		
NFATC4	 Nuclear factor of activated T‑cells 4	 Transcriptional regulator in naive T‑cells and	 3	C
		  differentiated effector T‑cells, dependent on		
		  calcium/PLCγ/calmodulin/calcineurin		
		  signaling (137)		
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Table I. Continued.

Gene symbol	 Gene name	 Main function with brief description (Refs.)	 Figure(s)	 Entitya

NFKB1	 Nuclear factor kappa B subunit 1	 Activated by various intra/extra‑cellular stimuli 	 3,4	 C, V
		  as viruses (92)		
NLRP3	 NLR family pyrin domain	 Intracellular sensor that detects a broad range	 3,4	C , V
	 containing 3	 of pathogen motifs (59)		
NOD2	 Inflammatory bowel disease	 Activates NFKB1, negatively regulates	 3	 C, T
	 protein 1	 TLR2 (152,153)		
NOS1	 Nitric oxide synthase 1	 Chemical messenger (154,155)	 3	 C
NOS1AP	 Nitric oxide synthase 1 adaptor	 Inhibitor of Nnos (156)	 3	 C
	 protein			 
NOS3	 Nitric oxide synthase 3	 Regulating vascular tone, cellular proliferation	 3	 C
		  leucocyte adhesion and platelet		
		  aggregation (157,158)		
NTRK1	 Neurotrophic receptor tyrosine	D evelopment and survival of neurons (159)	 3,4	 V, T
	 kinase 1			 
NTRK2	 Neurotrophic receptor tyrosine	D evelopment and maturation of the central and	 3,4	 V, T
	 kinase 2	 the peripheral nervous systems (159)		
NTRK3	 Neurotrophic receptor tyrosine	D evelopment of heart and nervous (159)	 3,4	 V, T
	 kinase 3			 
OLFM4	 Olfactomedin 4	 Facilitates cell adhesion, most probably through	 3	C
		  interaction with cell surface lectins and		
		  cadherin (160)		
P2RX1	 Purinergic receptor P2X 1	 Ligand‑gated ion channel with relatively high	 3	C
		  calcium permeability (161)		
P2RX7	 Purinergic receptor P2X 7	 Receptor for ATP that acts as a ligand‑gated	 3,4	 C, V
		  ion channel (162)		
PDGFA	 Platelet derived growth factor	 Wound healing (163)	 3	C
	 subunit A			 
PECAM1	 Platelet and endothelial cell	C ell adhesion (164)	 3	C
	 adhesion molecule 1			 
PLAUR	 Plasminogen activator, urokinase	 Localizing and promoting plasmin	 3	C
	 receptor	 formation (165)		
PPP3CB	 Protein phosphatase 3 catalytic	 Transduction of intracellular Ca(2+)‑mediated	 3	C
	 subunit beta	 signals (166)		
PRF1	 Perforin 1	D efense against virus‑infected cells (122)	 3	C
PTGS2	 Prostaglandin‑endoperoxide	 Role in the inflammatory response (167)	 3	 C
	 synthase 2			 
PTPN11	 Protein tyrosine phosphatase	 Positively regulates MAPK signal transduction	 3	C
	 non‑receptor type 11	 pathway (168,169)		
PYCARD	 PYD and CARD domain	 Key mediator in apoptosis and	 3,4	 C, V
	 containing	 inflammation (170,171)
REN	 Renin	 Angiotensin I from angiotensinogen generator	 3	C
		  in the plasma, initiating a cascade of reactions		
		  that produce an elevation of blood pressure		
		  and increased sodium retention by the		
		  kidney (172,173)		
SCL11A2	 Natural resistance‑associated	 Important in metal transport and their insertion	 3,4	 V, T 
	 macrophage protein 2	 into mitochondria (174)		
SCN5A	 Sodium voltage‑gated channel	 Responsible for the initial upstroke of the action	 3	C
	 alpha subunit 5	 potential in an electrocardiogram (175)		
SELE	 Selectin E	 Immunoadhesion (176)	 3,4	 V, T
SELP	 Selectin P	 Mediates rapid rolling of leukocyte rolling over	 3,4	 V, T
		  vascular surfaces during the initial steps in		
		  inflammation through interaction with		
		  SELPLG (177)		
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Table I. Continued.

Gene symbol	 Gene name	 Main function with brief description (Refs.)	 Figure(s)	 Entitya

SERPINE1	 Serpin family E member 1	 Alveolar type 2 cells senescence in the lung (178)	 3	 C, T
SERPINE2	 Serpin family E member 2	 Serine protease inhibitor with activity toward	 3	C
		  thrombin, trypsin, and urokinase (40)		
SFTPC	 Surfactant protein C	 Lowering the surface tension at the air‑liquid	 3	 C
		  interface in the peripheral air spaces (179)		
SFTPD	 Surfactant protein D	 May participate in the extracellular reorganization	 3	 C
		  or turnover of pulmonary surfactant, regulates		
		  immune response (180)		
SHC1	 SHC adaptor protein 1	 Signaling adapter that couples activated growth	 3	 T
		  factor receptors to signaling pathways (181)		
SIGIRR	 Single Ig and TIR domain	 Inflammation immune, response modulator (182)	 3	 C
	 containing
SLC11A2	 Solute carrier family 11‑member 2	 Metal transporter (183)	 3	 T
SOCS1	 Suppressor of cytokine signaling 1	 Exerts the viral virulence effect via inhibition of	 3,4	 V, T
		  type I and type II interferon (IFN) function (184)		
STXBP2	 Syntaxin binding protein 2	 Involved in cytolytic pathway (185)	 3	 T
TBK1	 TANK binding kinase 1	 Regulator of inflammatory responses to foreign	 3	 C
		  agents (186)		
TF	 Transferrin	 Transports of iron from sites of absorption and	 3,4	 V, T
		  heme degradation to those of storage and		
		  utilization (187)		
TFPI	 Tissue factor pathway inhibitor	 Anticoagulant protein blocking the initiation of	 3,4	 V, T
		  blood coagulation by inhibiting TF‑f VIIa and		
		  early forms of prothrombinase (188)		
TFRC	 Transferrin receptor	 Erythropoiesis and neurologic development (189)	 3,4	 V, T
TGFB1	 Transforming growth factor beta 1	 Gene expression proliferation (70)	 3	 C, T
THPO	 Thrombopoietin	 Regulates platelets and macrophages	 3,4	 V, T
		  differentiation (190)		
TICAM1	 Toll‑like receptor adaptor	 Native immunity against invading	 3	C
	 molecule 1	 pathogens (191)		
TLR2	 Toll‑like receptor 2	 Pathogen recognition‑potential therapeutic	 3	C , T
		  target (192‑194)		
TLR4	 Toll‑like receptor 4	 Upregulated after SARS‑CoV‑2 infection (195)	 3	C
TNF	 Tumor necrosis factor	 Biomarker of COVID‑19 severity (104)	 3,4	C , V, T
TNFRSF1A	 TNF receptor superfamily	C ontributes to the induction of non‑cytocidal	 3	C
	 member 1A	 TNF effects including anti‑viral state and		
		  activation of the acid sphingomyelinase (93,104)		
TNFRSF1B	 TNF receptor superfamily	 Regulates TNF‑α function by antagonizing its	 3	C
	 member 1B	 biological activity (93,104)		
TRAF3	 TNF receptor associated factor 3	 Regulates pathways leading to a NFKB and MAP	 3	C
		  kinases activation, and B‑cell survival (196)		
TYK2	 Tyrosine kinase 2	 Antiviral activity (197)	 3	 C
VCAM1	 Vascular cell adhesion molecule 1	 Mediates the adhesion of lymphocytes, 	 3,4	 V, T
		  monocytes, eosinophils and basophils to		
		  vascular endothelium (198)		
VEGFA	 Vascular endothelial growth	D ominant inducer to blood vessels growth	 3	C
	 factor A	 (increases their permeability) (199)		
VKORC1	 Vitamin K epoxide reductase	 Reduces inactive vitamin K 2,3‑epoxide to	 3	 C
	 complex subunit 1	 active vitamin K (200)		
VWF	 von Willebrand factor	 Involved in hemostasis and thrombosis (201)	 3,4	C , V, T

aEntities: C, COVID‑19; V, vaccine‑induced thrombotic thrombocytopenia; T, thrombocytopenia.
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NCAM1 is involved in cell‑cell adhesion in neural‑muscle 
cells in the embryonic phase and later, and more notably, in the 
responsiveness to viral infections (rabies virus and papilloma 
virus) (45). PTPN1 is a potential therapeutic target of obesity 
and type 2 diabetes mellitus as well (46); SHC1 is implicated in 
reactive oxygen species regulation, thus, in the oxidative stress 
response (47), while VCAM1 is directly involved in thrombosis 
and atherogenesis and acute respiratory syndrome (48‑51).

VITT and thrombocytopenia interactome. Various coagulation 
mechanisms have been implicated in VITT: High levels of 
D‑dimers and low levels of fibrinogen have been observed in 
patients (2,52,53). On the other hand, early reports of VITT 
described a higher incidence of the syndrome in young women, 

exhibiting both age‑dependence and sexual dimorphism. 
VITT, though very rare, is of utmost importance. Yet, in 
March, 2021, the European Medicines Agency (EMA) issued 
a statement noting that the thromboembolic events of VITT in 
vaccinated populations were not higher than in general popu‑
lation (54). Subsequently, the ‘risk vs. benefit’ equilibrium was 
weighed by the World Health Organization (WHO), promoting 
the benefit of the vaccination vs. the extremely low risk of 
thromboembolic risk of VITT in the general population (55).

VITT is currently termed ‘thrombosis with thrombocyto‑
penia syndrome (TTS)’ by the Centers for Disease Control and 
Prevention (CDC) and the US Food and Drug Administration 
(FDA)  (56), and is characterized by arterial and venous 
thrombosis at unexpected sites (i.e., cerebral venous sinuses, 

Figure 3. COVID‑19 and thrombocytopenia interaction network. COVID‑19 molecules are represented by circles; thrombocytopenia‑related molecules are 
represented by squares; common molecules are represented by rhomboids.
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splanchnic vessels of variant severity and/or positive platelet 
factor (PF) 4‑heparin ELISA (‘HIT’ ELISA) syndrome (52), 
exhibiting both age dependence and sexual dimorphism 
(more frequent in individuals <50 years old and of the female 
sex) (2). The laboratory and clinical features of this syndrome 
are similar to those of the heparin‑induced thrombocytopenia 
(HIT) syndrome and/or the HIT‑like autoimmune thrombosis 
with thrombocytopenia syndrome (2,52,53), both of which 
have already been reported following surgery, the uptake of 
certain pharmaceuticals, or during some infections in patients 
that are not being treated with heparin. The therapeutic 
suggestions of this recently coined syndrome include early 
initiation of non‑heparin anticoagulation, high‑dose IVIG, 
and/or prednisolone (57).

The genetic basis of the VITT syndrome appears to 
be closely intertwined with that of the COVID‑19 disease 
and, as such, they share 16 nodes: CASP1, CXCL8, FGF7, 
HLA‑A, HLA‑B, IL1B, IL6, MS4A1, NFATC1, NFKB1, 
NLP3, P2RX7, PYCARD, TNF, TFP1, VWF (Figs. 3‑5). The 
purpose of the vaccine is to inhibit pathways that mediate this 
condition (52,58). More importantly, the relevant research is 
ongoing with the extremely rare cases of this syndrome, as 
VITT incidence is ~0.74‑1  cases per 100,000  vaccinated 
subjects (52). Of note, the anti‑COVID‑19 vaccines do not 
cause illness and the two morbid entities (COVID‑19 and 
VITT) are by no means identical, with the etiopathology of the 
latter being actually autoimmune, with auto‑antibodies against 

platelet factor 4. More explicitly, COVID‑19 network shares 
14 nodes with thrombocytopenia (AIM2, CD8A, HLA‑DRB1, 
IFI16, IL1B, IL6, JAK2, NCAM1, NOD2, SERPINE1, 
TGFB1, TLR2, TNF and VWF), while VITT (which is a 
type of thrombocytopenia) shares 46 nodes with thrombo‑
cytopenia (Figs. 3‑5). Notably, SHC1, STXBP2, CDC20 and 
ADAM10 are silenced in VITT, while AURKA, CD46, CD19 
are uniquely expressed following vaccination (apparently not 
expressed in common thrombocytopenia or in COVID‑19) 
(Figs. 3‑5). These molecules were not previously identified as 
VITT‑related and are, thus, a novel finding, at least to the best 
of our knowledge.

It is known that the NLP3 inflammasome is implicated 
in both COVID‑19 and VITT, apart from its participation 
in other inflammatory reactions (59). It has also been previ‑
ously demonstrated that acute thrombotic events may 
manifest during hypoxia, as shown in COVID‑19, due to an 
early proinflammatory state in the venous milieu, mediated 
by a HIF‑induced NLP3 inflammasome complex (60,61). In 
the network constructed in the present study, NLP3 connects 
with CASP1, IL‑IB, IL17A, CXCL8, IL‑6, MYD88, NFKB1, 
P2RX7, PYCARD and TNF.

P2RX7 exhibits sexually dimorphic and contrasting roles 
in the pathogenesis of thrombosis, depending on the pathogen 
type, the severity of infection, the cell type infected and 
the level of tissue activation (62). In the thrombocytopenia/
COVID‑19/VITT cases, the viral load, the cell‑type infected 

Figure 4. Overlaps between and amid all three morbid entities in Venn diagrams: (A) between COVID‑19 and thrombocytopenia, (B) between VITT and 
thrombocytopenia, (C) between COVID‑19 and VITT, and (D) amid all. VITT, vaccine‑induced thrombotic thrombocytopenia.
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and the infecting virus strain or certain vaccine types have 
been associated with NLP3 hyperactivation, which in the pres‑
ence of comorbidities, such as liver, renal, gut or respiratory 
tract illnesses, diabetes mellitus, previous infections, exposure 
to pollutants, and/or lifestyle factors, such as smoking and 
obesity, may upend the roles of P2RX7 and PYCARD to those 

of tissue‑damaging, or even lethal factors (62,63). More impor‑
tantly, the persistent neurological effects (‘long‑COVID‑19’) 
observed in a large percentage of patients with COVID‑19 may 
be explained via the activation of these pathways. Thus, P2RX7 
antagonists may be promising therapeutics in the manage‑
ment of both VITT and ‘long‑COVID‑19’ (62,64), as P2RX7 

Figure 5. COVID‑19 and thrombocytopenia interactions network. VITT‑related molecules are depicted by triangles; common with COVID‑19 molecules are 
encircled; thrombocytopenia‑related molecules are depicted by squares; VITT common with thrombocytopenia molecules are depicted by polygons.

Table II. Common direct connections between ‘PYCARD’ or ‘P2RX7’ and ‘COVID‑19’ or ‘VITT’.

Gene	C OVID‑19	 VITT	C OMMON direct connections

PYCARD 	 NLP3, CASP1, IL1B, IL18, IKBKG	 NLP3, CASP1, IL1B	 NLP3, CASP1, IL1B
P2RX7	 NLP3, CASP1, P2RX1	 CASP1, IL1B	 CASP1
COMMON direct connections	 NLP3, CASP1	C ASP1, IL1B	C ASP1
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receptor stimulation has been implicated in lung damage, 
psychiatric disorders and pathological inflammation (65,66). 
In the COVID‑19 interactome, P2RX7 directly interacts with 
NLP3, CASP1 and P2RX1. On the contrary, in the VITT 
network, P2RX7 directly interacts only with NLP3, IL1B and 
CASP1. Accordingly, PYCARD interacts with NLP3, CASP1, 
IL1B, IL18 and IKBKG in COVID‑19, and with NLP3, CASP1 
and IL1B in the VITT syndrome (Table II). The common node 
in all possible combinations, as shown in Table II, is CASP1, a 
downstream event of the NLP3 inflammasome; CASP1 activa‑
tion promotes IL1B production, which may be prevented by a 
pan‑caspase inhibitor or by glyburide treatment (67).

To this end, the present study investigated the aforemen‑
tioned issues through the construction of molecular networks 
and the detection of at least one known COVID/VITT/thrombo‑
cytopenia molecule that confirmed that endothelial dysfunction 
and blood thrombosis are the key players of both COVID‑19 
and VITT morbid entities. One limitation of the present study 
is that it included only wild‑type genes and their products. To 
the best of our knowledge, however, this is the first effort made 
at providing a comprehensive network map of the molecules 
involved in the underlying mechanisms of COVID‑19, long 
COVID‑19 and/or VITT pathophysiology.

In conclusion, the interactomes presented herein revealed 
therapeutic and vaccination modification targets (i.e., SHC1, 
NCAM1, HLAs, CD8A, PTPN1, VWF and TBP1). It was also 
demonstrated that: i) NCAM1 is involved in SARS‑CoV‑2 
infection responsiveness, apart from papilloma and rabies virus 
infections, and may be responsible for relevant vaccination 
side effects; ii) NLP3, P2RX7 and PYCARD contribution may 
help explain (partly or mostly) VITT and/or ‘long COVID‑19 
side‑effects’; iii) furthermore, the antagonism of these latter 
nodes should focus on potential pharmacological targets in 
the context of SARS‑CoV‑2 infection and/or vaccine immu‑
nization responsiveness. In conclusion, network construction 
is a powerful tool, which may be used to elucidate the 
physiology and pathophysiology of different states in clinical 
investigation. The highly interconnected network presented 
herein highlights the complexity of COVID‑19/VITT patho‑
physiology, mapping the key role of cytokines, enzymes and 
immune response markers (lymphocyte regulators and human 
leucocyte antigens) that may be potential drug or vaccine 
targets. It was constructed using wild‑type genes and gene 
products, revealing the body's predisposition to COVID‑19 
infection or VITT. Of note, the COVID‑19 and thrombocyto‑
penia common nodes appear to be key players in the natural 
history of the illness.
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