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Abstract: Ionizing radiation (IR) is a genuine genotoxic agent and a major modality in cancer treat-
ment. IR disrupts DNA sequences and exerts mutagenic and/or cytotoxic properties that not only
alter critical cellular functions but also impact tissues proximal and distal to the irradiated site.
Unveiling the molecular events governing the diverse effects of IR at the cellular and organismal
levels is relevant for both radiotherapy and radiation protection. Herein, we address changes in the
expression of mammalian genes induced after the exposure of a wide range of tissues to various
radiation types with distinct biophysical characteristics. First, we constructed a publicly available
database, termed RadBioBase, which will be updated at regular intervals. RadBioBase includes
comprehensive transcriptomes of mammalian cells across healthy and diseased tissues that respond
to a range of radiation types and doses. Pertinent information was derived from a hybrid analy-
sis based on stringent literature mining and transcriptomic studies. An integrative bioinformatics
methodology, including functional enrichment analysis and machine learning techniques, was em-
ployed to unveil the characteristic biological pathways related to specific radiation types and their
association with various diseases. We found that the effects of high linear energy transfer (LET)
radiation on cell transcriptomes significantly differ from those caused by low LET and are consistent
with immunomodulation, inflammation, oxidative stress responses and cell death. The transcriptome
changes also depend on the dose since low doses up to 0.5 Gy are related with cytokine cascades,
while higher doses with ROS metabolism. We additionally identified distinct gene signatures for dif-
ferent types of radiation. Overall, our data suggest that different radiation types and doses can trigger
distinct trajectories of cell-intrinsic and cell-extrinsic pathways that hold promise to be manipulated
toward improving radiotherapy efficiency and reducing systemic radiotoxicities.

Keywords: radiation response; bioinformatics; oxidative stress; transcriptomics; radiobiology database;
gene signature

1. Introduction

Radiation therapy has witnessed unprecedented advances during the last decades,
asserting its place as a major part of everyday clinical practice [1]. It contributes to ~40%
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of curative cancer treatments [2], alone or in combination with chemotherapy [3], and
tends to be less morbid than surgery [4]. In addition to its direct cytotoxic effects on the
targeted tumors, irradiation often triggers indirect localized and systemic responses. These
responses are not only occasionally linked with early or late adverse side effects proximal
or distal to the treatment site but can also be beneficial for patient outcomes. Intriguingly,
recent studies show that radiotherapy induces bona fide immunogenic cell death and en-
gages tumor-targeting immune responses in support of enhancing treatment efficacy. Local
irradiation reshapes the tumor microenvironment (TME) by promoting prooxidant and
proinflammatory reactions, which may trigger adaptive immune responses [1]. Stressed
and dying irradiated cells release numerous bioactive molecules, for example, major his-
tocompatibility complex, cell-adhesion molecules, and proinflammatory cytokines and
their receptors, as well as molecules with damage-associated molecular patterns (DAMPs),
small metabolites, nucleic acids and lipids. These tumor-associated antigens interact with
the immune system to induce immunogenic cell death [5,6] since they are taken up by the
dendritic cells and stimulate downstream effector T cells, which subsequently recognize
and lyse tumor cells both locally and at distant sites [7]. In several clinical cases, tumors
distal to the targeted site regressed in response to irradiation-induced immunogenicity, a
phenomenon termed as an abscopal effect [7]. In this respect, the irradiated cells act as in
situ vaccines against tumors, sensitizing the immune system to detect cancer cells even
long after the completion of radiation treatment. Hence, systemic effects of radiotherapy
may act as a ”blessing in disguise” due to their potential to ally with the immune system
and increase responses that control the growth of micrometastases and malignant tissues
at distant sites. However, the effects may also be a “curse” resulting in the suppression of
antitumor immunity by mechanisms involving regulatory T cells [8].

The newly-discovered immunomodulatory properties of radiation have been linked
with its ability to primarily activate the DNA damage response and repair (DDR/R)
machinery. DDR/R is a highly conserved and complex network of signal transduction
pathways that preserves the genetic information by repairing a variety of DNA lesions,
such as nucleotide alterations, bulky adducts, single-strand breaks (SSBs) and double-
strand breaks (DSBs). These pathways can be lesion-specific, for example, non-homologous
end joining (NHEJ) and homologous recombination (HR) repair for DSBs; single-strand
break repair (SSBR) for nicked DNA strands; mismatch repair (MMR) for errors that
occurred during replication; base excision repair (BER) for oxidative base modifications;
and nucleotide excision repair (NER) for helix-distorting lesions [9]. The stimulation of
different components of DDR/R, either endogenously or from external sources, such as
exposure to ionizing radiation (IR), alerts host immunity at the systemic level and vice
versa [10], thereby accounting for the intriguing immunogenic properties of irradiated
cells. These novel concepts have rejuvenated clinical interest to exploit this dynamic
and bidirectional crosstalk between DDR/R and immune response (ImmR) signaling and
manipulate it towards personalized radiotherapeutic solutions.

There are several types of therapeutic modalities, classified according to radiation
quality associated mainly with the linear energy transfer (LET), a parameter accounting
for the amount of energy deposited per unit length of the irradiating particle’s path. Low-
LET radiation entails the more frequently used γ- and X-rays, while high-LET refers to
protons, carbon ions and α-particles that capitalize on the physical and radiobiological
properties of charged particles for an improved dose distribution and increased cell killing
efficacy. Carbon ions kill cells twice or three times more effectively than protons and
conventional radiation modalities [11]. In general, high-LET types induce more DSBs
per dose unit, and more complex and dense lesions than low-LET types because they
deposit large amounts of energy within a small distance [12]. The type of initial DNA
damage largely determines the repair pathway that is subsequently activated. For example,
heavy ions preferentially shift towards DSB repair pathways, such as HR and NHEJ, when
compared with sparsely ionizing irradiation [1]. Given that a different type of DNA damage
can trigger different DDR components, which in turn are associated with the release of
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immunostimulatory neoantigens as “danger signals” (i.e., DAMPs), it is reasonable to
envisage that each of these irradiation types governs distinct trajectories of DNA damage
type—DDR pathway—immunogenic responses, which, however, to date, have not been
identified [1]. In this regard, understanding the major differences of low- and high-LET
treatment options is a current challenge of radiotherapy, not only for minimizing side
effects, but also for making the most of each modality toward stimulating tumor-targeting
adaptive immunity post-irradiation.

The effects of the various radiation types are mediated, at least partly, through changes
in the transcriptomes of the irradiated cells. In general, different types of radiation trigger
distinct gene transcription programs associated with divergent cellular responses both in
cancer and normal cells. Although radiation type-specific transcriptional changes have
been examined sporadically [13–18], to our knowledge, there is no systematic effort to
characterize the effects of several high-LET or low-LET radiation types and doses of
radiation in normal or diseased tissues, which would set a basis to untangle their side
effects from their beneficial cytotoxic and immunogenic properties. Simultaneous screening
of the transcriptomes across irradiated cancer and normal tissues would require large-
scale experiments for each radiation type and/or dose. Furthermore, due to the genetic
heterogeneity of cells in irradiated tissues, which is a major parameter of the efficacy of
radiotherapy, extensive testing on a large variety of tissue contexts is required, transforming
this effort to a “Herculean task”.

As a “deus ex machina”, computational approaches have entered the stage of radiobiology
to accelerate and complement these efforts. In the present work, we constructed a publicly avail-
able, user-friendly database, termed RadBioBase version 1 (http://radbiodb.physics.ntua.gr/),
which includes a collection of up-to-date existing data on mammalian genes differen-
tially expressed after exposure to different types (X-rays, γ-rays, protons, carbon ions and
α-particles) and doses of radiation in a variety of cell types. This database is a comprehen-
sive tool for correlations of radiation type and/or dose with corresponding transcriptional
responses across a variety of tissues. Following an integrated bioinformatics approach that
included gene-centric, pathway-oriented and machine learning analyses, we consolidated
the IR-induced differential gene expression to biological pathways and human diseases. In
addition, we identified gene signatures for different radiation types. Our analyses provide
insights into the links between the IR-induced damage and the signal propagation of stress
to distant sites, and hold promise for a deeper understanding of the association between
DDR and the immune system to a wider context, in a coordinated multiscale manner, which
could be translated to more efficient and safer radiotherapy schemes.

2. Materials and Methods
2.1. Data Hybrid Collection and Transcriptomic Analyses

A broad collection of genes was initially obtained by rigorous text mining of the bibli-
ographic database MEDLINE/PubMed 2.0 (https://pubmed.ncbi.nlm.nih.gov/, accessed
on 15 March 2021), with the use of keywords related to X-ray, γ-ray, proton, carbon ion
and α-particle irradiation, i.e., ((gamma radiation) OR (gamma rays) OR (γ rays)) AND
gene expression; ((proton(Title/Abstract)) AND (radiation(Title/Abstract))) AND (gene ex-
pression(Title/Abstract)); ((carbon(Title/Abstract)) AND (radiation(Title/Abstract))) AND
(gene expression(Title/Abstract)) from 1 January 2006 to 30 August 2021. The articles were
independently retrieved from the literature by three of the authors (E.S, R.H.K. and A.P.).
Relevant data were extracted from the articles and recorded into an Excel worksheet.

For the articles to be considered eligible for inclusion in our study, they had to
report the following information: (i) tissue/cell line, (ii) cell type (cancer or normal),
(iii) model organism, (iv) type of irradiation, (v) irradiation exposure time, (vi) dose amount,
(vii) availability of data regarding genes differentially expressed between irradiated and
non-irradiated (control) cells/tissues, or sufficient data to calculate differential gene expres-
sion. To minimize investigator biases, compliance of the screened articles with the study
eligibility criteria was assessed, independently, by three researchers, E.S, R.H.K. and A.P.

http://radbiodb.physics.ntua.gr/
https://pubmed.ncbi.nlm.nih.gov/
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and validated by the supervising researcher (A.G.G.). In this way, a total of 39 studies were
selected. Gene symbols were assigned to the extracted human, mouse and rat genes accord-
ing to the HUGO Gene Nomenclature Committee (HGNC) (https://www.genenames.org/,
accessed on 20 November 2021).

In cases where differential gene expression data were not provided in the corre-
sponding articles, we searched for the original gene expression data files deposited in
NCBI GEO (Gene Expression Omnibus) DataSets [19] according to the selection criteria:
(i) gene expression data derived from irradiated and non-irradiated (control) tissue/cell
samples, and (ii) inclusion of >5000 genes in the dataset. The following microarray tran-
scriptome datasets were obtained where their respective GEO series and PubMed refer-
ences are shown in brackets: X-rays (GSE107685 [20], GSE113611 [21], GSE107443 [22],
GSE90909 [23], GSE85323 [24], GSE59861 [25], GSE6262 [26]); α particles (GSE12435 [27],
GSE21059 [28], GSE18760 [29]); carbon ions (GSE6630 [30]); protons (GSE20629 [31]). The
GEO2R interactive web server [19] was employed to detect genes differentially expressed at
different conditions.

The differentially expressed genes (DEGs) with an absolute log2 fold-change (FC)
greater than 1.5 (|log2FC ≥ 1.5|), or FC > 1.5 and FC < 0.67, and FDR-adjusted p-value
(q-value) less than 0.05 or p-value < 0.001 (for transcriptomic data) and p-value < 0.05 (for
the text mining data) were retained.

2.2. Functional Enrichment Analysis

Venn diagrams were constructed using the online tool Draw Venn Diagram
(https://bioinformatics.psb.ugent.be/webtools/Venn/, accessed on 20 January 2022) to
identify common up and downregulated genes across radiation types, as well as of low-
versus high-LET radiation (only for entries where the corresponding LET was provided
in the original paper) and deregulated genes of lower versus higher doses in the range
of clinical interest (0.3–0.5 Gy vs. 0.6–2.0 Gy). Furthermore, overrepresented biological
pathways, along with the corresponding disease pathways, were identified in different
sets of genes, related to every type of irradiation, as well as for low and high LET, and low
and high clinical doses. Functional enrichment analysis was conducted with WebGestalt
(WEB-based GEne SeT AnaLysis Toolkit) 2019, an online tool used for the identification of
statistically significant enriched terms in the given gene sets compared to selected reference
sets [32]. The WebGestalt parameters chosen were “Organism of Interest”: Homo sapiens,
“Method of Interest”: Over-Representation Analysis (ORA), “Functional database”: geneon-
tology/Biological Process noRedundant and pathway/Wikipathway for biological paths,
or disease/Disgenet for diseases, “Select gene ID type”: gene symbol, “Select Reference
set”: genome; the default advanced parameters were chosen, and only pathways with
false discovery rate (FDR)-corrected p-value less than 0.05 were considered in the analysis.
Affinity propagation was used for clustering the terms (i.e., biological process and disease)
by selecting a subset of representative terms.

2.3. Database Construction

API-based Directus (https://docs.directus.io/, accessed on 10 April 2022), an open-source
data platform, was used for content management, and MySQL (https://dev.mysql.com/,
accessed on 10 April 2022), an open-access database management system, was used to store
the data on the backend side. Data stored in excel format were imported to the MySQL
database using Node.js.

On the front end, the popular VueJS framework, which provides officially maintained
support packages for building web UIs, was used to create easily accessible content inter-
faces. Axios library (https://axios-http.com/, accessed on 12 April 2022), a promise-based
HTTP client for the browser and Node.js, was used to obtain the data provided by Directus
content management API services. Tailwind CSS framework (https://tailwindcss.com/,
accessed on 12 April 2022) was utilized for the styles of the website interface.

https://www.genenames.org/
https://bioinformatics.psb.ugent.be/webtools/Venn/
https://docs.directus.io/
https://dev.mysql.com/
https://axios-http.com/
https://tailwindcss.com/
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2.4. Machine Learning Approach

Random Forest is a bagging ensemble algorithm, which uses multiple different algo-
rithms to generate a consensus output. It accepts as input a random sample generated from
a given dataset with replacement, and then this sample is fed into the tree classifiers. At
the end, the class of the sample is determined by voting with the principle of majority rule.
During data classification, it can also provide the importance score of each variable (e.g.,
gene) and evaluate its role in the classification. There are many popular methods for gene
selection, including deep gene selection [33], WERFE [34], Based Bayes error Filter [35],
etc. The basic principle of all of these methods is to firstly rank the genes on the basis of
certain evaluation criteria, and then select an optimal subset of genes. However, these
methods cannot capture the relationship between the selected genes and the precision
of the classification. Su and colleagues developed an algorithm based on recursive fea-
ture elimination (RFE), by taking into account the impact of both the gene numbers and
prediction performance [36].

RFE is a greedy algorithm that creates gene sets recursively and then determines an
optimal subset from those sets. The goal of RFE is to obtain the smallest possible sets of
variables in an iterative way. RFE discards those genes of least importance in an iterative
way and performs classification based on the new subsets of genes. All the gene subsets
are evaluated based on their classification performance.

In our study, in order to prioritize the genes in the groups (a) irradiated versus non-
irradiated, and (b) cancer versus normal, we first applied the RFE algorithm in Random
Forest. All the methods were implemented by using the Python 3.9.7 scikit-learn module
(https://pypi.org/project/scikit-learn/, accessed on 16 February 2022). To this end, we
randomly divided our datasets into 75% training data and 25% testing data for all the
models used for classification; the random state was set to 42. We first fit the model, then
removed the less relevant genes (listed in the RadBioBase) and calculated the classification
performance metric. After that, we removed the least important genes, fitted the model
again and calculated the performance. This process was repeated until there were no genes
left. The final set of genes was the set that maximized the performance. However, the
gene subset selected in this study was the one with the highest accuracy since accuracy is
the most common evaluation metric adopted for assessing the robustness and efficiency
of algorithms. The final gene subsets of high versus low LET demonstrated classification
accuracies of 95.54%, respectively.

Finally, to enhance the robustness of our results, robust rank aggregation (RRA) [37]
was applied to the output of the previous steps so as to obtain the top-ranking genes. The
RRA method uses a noise-robust probabilistic model to aggregate ranked lists, such as lists of
genes, and to calculate the statistical significance (p-values) for all ranked elements. RRA was
performed in the R programming environment (version 4.1.3) (https://www.r-project.org/,
accessed on 10 March 2022).

2.5. Functional Network

The STRING database (version 11.5) (https://string-db.org/, accessed on 15 May
2022) [38] was used to investigate and visualize both known and predicted associations
among the protein products of the genes under study.

3. Results and Discussion
3.1. Development of RadBioBase

For database construction, we performed text mining in PubMed, using appropriate
keywords across studies that experimentally address the overall effect of five high- and
low-LET radiation types of interest in a broad range of mammalian cell types, including
human, mouse and rat study model systems. The database includes 7436 entries, with a
total of 3730 unique genes derived from 14 tissues/cell lines [20–31,39–65]. For each entry,
the following information was provided:

https://pypi.org/project/scikit-learn/
https://www.r-project.org/
https://string-db.org/
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- Differential expression of genes: The expression status of the corresponding genes
(i.e., up or downregulated in irradiated compared to non-irradiated tissue/cell control
groups). In this version of the database, the canonical, full-length transcripts for each
gene were used.

- Biological characteristics: Cell type (cancer or normal), organism and tissue/cell line.
- Type of irradiation: X-rays, γ-rays, protons, carbon ions or α-particles.
- Post-irradiation time when provided in the original study.
- Physical characteristics: LET (keV/µm), beam energy (MeV or kV for X-rays), dose

(Gy) and average dose rate (Gy/min or Gy/h). In the cases where the LET of particles
was not included in the original paper, it was calculated with the Stopping and Range
of Ions in Matter (SRIM/TRIM) software, using as entrance parameters the type of ion,
the target density and the energy of the irradiation beam when provided. For tissue
targets not included in the compound dictionary of SRIM, the elemental compositions
and mass densities were obtained from the bibliography [66–68]. Notably, the SRIM-
calculated LET values were calculated only when provided in the relative studies,
for the entrance point (highest energy values) of the beam instead of the Bragg peak,
and thus were much smaller than the expected LET values for the Bragg peak region.
According to the different energies in the various studies, LET values for protons were
calculated as such: energies 100 MeV—-> 0.76 keV/µm, 250 MeV—-> 0.34 keV/µm,
190.6 MeV—-> 0.5 keV/µm, 230 MeV—-> 0.38 keV/µm, 4.5 MeV—-> 9.54 keV/µm
(Table S1). Moreover, those α-particle energies not provided in the original paper were
calculated empirically with the help of LET-energy curves [69].

- Comparison with low-LET irradiation: X-rays, γ-rays or electrons, depending on the
information given in the original paper.

- DNA damage (in clusters per Gy per Gbp): DSBs and total clusters of DNA damage
were calculated using the Monte Carlo Damage Simulation (MCDS) software [70,71]
for each radiation type (Table S1). For each MCDS input file, the parameters were
set as CELL: DNA = 1 ndia = 5 cdia = 10, SIMCON: nocs = 10,000 seed = 987,654,321,
and the oxygen concentration was set to 20%, while X-ray and γ-ray radiation was
simulated by a 10 keV electron beam. The inclusion of the “complex damages” is
based on the well-documented importance of clustered DNA damages in defying
biological responses and can provide the first hints for possible connections of the
quality and quantity of DNA damage with specific gene expression [72]. PubMed ID
of the corresponding article.

- Type of validation: depending on the method used in the original studies for data val-
idation, we defined values as (a) microarrays, (b) RNA-Seq, (c) qPCR, (d) microarrays
and qPCR, and (e) RNA-Seq and qPCR.

The above data are available through RadBioBase (http://radbiodb.physics.ntua.gr/).
RadBioBase has a user-friendly interface and can be searched by using several options,
such as (a) differentially expressed genes (b) gene expression status (up or downregulated),
(c) type of radiation, (d) cell type (normal or cancer), (e) radiation dose, (f) radiation
exposure time, (g) as well as a combination of the above options (Figure 1). The search
results are displayed in a new window, in a tabular format, and can be downloaded to a
CSV file. RadBioBase v1 is maintained by the National Technical University of Athens,
Greece, and will be updated at regular intervals.

http://radbiodb.physics.ntua.gr/
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0.1–5 Gy, respectively.

3.2. Commonalities among Radiation Types across a Number of Mammalian Tissues

Using RadBioBase, we performed a comparison among all different types of irradiation
(X-rays, γ-rays, protons, carbon ions and α-particles), to unveil basic commonalities across
all therapeutic modalities and mammalian tissue types. One important consideration
regarding this database is that, since its generation is based on publicly available data, it
is inevitably more representative for the types of tissues and irradiation most frequently
used across the corresponding studies. To collectively describe the content of this database,
we estimated the number of entries for tissue type, radiation type, organism type and
normal versus cancer cell type (Figure 2A–D). Overall, the database includes 14 types of
cells/tissues (Figure 2A). The highest number of entries are assigned to blood, breast and
lung tissue, possibly reflecting the types of cancers where irradiation represents a frequent
standard of care treatment. Similarly, 50% of the entries correspond to X-rays, which have
been in research and clinical use for longer periods than the more recent radiation types
(Figure 2B). Moreover, 74% of the entries represent normal and 26% cancer cells (Figure 2C).



Antioxidants 2022, 11, 2286 8 of 21

The percentages of entries in human versus rodent cells are similar, leading to a ratio of 1.06
(Figure 2D). This information facilitates the design of downstream analyses, interpretations
of the results and inferences about disease pathways, especially in cases where the data are
combined to generate universal signatures.

As shown in Figure 2E, among all up and downregulated genes (included in the
current version of RadBioBase), we identified five genes that are commonly activated in
all radiation groups (GDF15, GADD45A, SESN1, CDKN1A and TP53INP1). These genes
are downstream effectors/targets of p53, a major tumor suppressor gene that encodes a
transcription factor with a central role in preserving cell homeostasis and is one of the most
important targets for translational cancer research. The physiologically low levels of mature
p53 increase upon cellular stresses and, together with post-translational modifications, lead
to the formation of oligomers that bind to specific p53 responsive elements on target gene
promoters. Upon limited DNA damage, p53 induces cell cycle arrest and DNA repair
genes, whereas upon extended and severe damage, it induces genes mediating senescence
or cell death so as to isolate damaged cells from the intact cellular population [73]. The p53
pathways control five different kinds of cell death: (i) apoptosis, (ii) ferroptosis, (iii) TNF
ligand- or (iv) FAS ligand-mediated necroptosis and (v) cellular senescence followed by the
secretion of cytokines that attract immune system cells [74]. Our results are consistent with
studies suggesting that the p53 pathway is a universally-induced sensitizer of cells to any
type of irradiation [74]. They also suggest that p53-targeting molecules hold potential to be
combined with any type of radiotherapeutic modality to increase treatment efficacy across
a number of tissues.

As shown in Figure 2E, the number of non-overlapping genes for each radiation
type tends to be higher than the genes that are in common in two or more radiation
types. The fact that transcriptional responses tend to be radiation type-specific strongly
indicates that along with the p53 cascades, each radiation modality can activate distinct
biological pathways to exert its effects on cells. In an analogous manner, radiation-specific
transcripts might be associated with different disease pathways, which can be predictors
of specific side effects. To shed light on these aspects, we performed a detailed analysis
of the overrepresented biological and disease pathways related to each type of radiation
separately, along with the corresponding genes.
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scription factor with a central role in preserving cell homeostasis and is one of the most 
important targets for translational cancer research. The physiologically low levels of ma-
ture p53 increase upon cellular stresses and, together with post-translational modifica-
tions, lead to the formation of oligomers that bind to specific p53 responsive elements on 
target gene promoters. Upon limited DNA damage, p53 induces cell cycle arrest and DNA 
repair genes, whereas upon extended and severe damage, it induces genes mediating se-
nescence or cell death so as to isolate damaged cells from the intact cellular population 
[73]. The p53 pathways control five different kinds of cell death: (i) apoptosis, (ii) ferrop-
tosis, (iii) TNF ligand- or (iv) FAS ligand-mediated necroptosis and (v) cellular senescence 
followed by the secretion of cytokines that attract immune system cells [74]. Our results 
are consistent with studies suggesting that the p53 pathway is a universally-induced sen-
sitizer of cells to any type of irradiation [74]. They also suggest that p53-targeting mole-
cules hold potential to be combined with any type of radiotherapeutic modality to in-
crease treatment efficacy across a number of tissues.  
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Figure 2. A description of the contents of the database and commonalities among the several radiation
types. Database statistics. (A) Number of entries corresponding to tissues and cell lines are shown on
top of the bars; the height of the bars is proportional to the number of entries. Percentage of entries
related to (B) radiation types, (C) cancer and normal, (D) human and rodent tissues/cells across
different types of radiation. (E) Venn diagram illustrating the overlapping of differentially expressed
genes (both up and downregulated) between all radiation groups. The five common genes in all
radiation groups are GDF15, GADD45A, SESN1, CDKN1A and TP53INP1.3.3. Each radiation type is
linked to distinct biological functions.
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We found that each radiation type, in general, exhibits a unique set of biological
processes, beyond the expected pathways of response to stress and cell death. In particular,
X-rays are related to metabolic processes, including the “fatty acid metabolic process”,
“small molecule catabolic process” and “sulfur compound metabolic process” (Figure 3A
and Table S2). This is consistent with several studies showing that IR can cause metabolic
changes, oxidative stress and cell death [75,76] and that sulfur-related enzymes play a major
role in the radiation-induced oxidative stress response and detoxification [77]. Upon irra-
diation, where the levels of oxygen-free radicals are increased, sulfur-related metabolism
acts as an antioxidative stress defense pathway. These processes are particularly prominent
in the liver since its function is critical in the protection against induced stress, render-
ing the liver extremely sensitive to radiation. X-ray irradiation was also found to be
associated with fatty acid (FA) metabolism. Interestingly, recent studies suggest that FA
metabolism represents the link between X-ray irradiation and ferroptosis, a novel type of
programmed cell death that depends on iron and is characterized by the accumulation of
lipid peroxides [78]. This FA-related type of cell death is genetically and biochemically
distinct from other forms of regulated cell death. In agreement, ferroptosis-inducing agents
can sensitize cancer cells to X-ray irradiation [79], while pro-ferroptotic FA metabolism
renders cancer cells immunogenic [80]. In light of these data, it would be interesting to
investigate whether X-rays initiate an FA metabolism–ferroptosis axis, which subsequently
modulates the immunogenic properties of irradiated cells towards enhancing therapeutic
responses to immunotherapy.

Additionally, we found associations of X-ray-induced transcriptomes with zinc and
copper homeostasis (Figure 3A and Table S2). On the one hand, zinc homeostasis is indi-
rectly related to post-irradiation effects through increases in oxidative stress [81–83]. Zinc
exhibits protective effects against irradiation by activating antioxidant enzymes, which
in turn reduce reactive oxygen species (ROS) levels and oxidative stress [81,83,84]. In ad-
dition, zinc acts as an intracellular signaling molecule, activating apoptotic pathways,
immunodeficiency and inflammation suppression [81,83,85]. On the other hand, cop-
per ions contribute to radiation- and stress-resistance [86], tumor growth, inflammation
and angiogenesis [87–90].

Among higher LET radiation types, protons are strongly related to apoptosis and
oxidative stress (Figure 3B and Table S2), while carbon ion and alpha particles with en-
hanced proinflammatory signaling. However, while carbon ions exhibit overrepresented
interleukin-18 (IL-18) signaling pathways (Figure 3B and Table S2), α-particles appear to be
linked with photodynamic therapy (PDT)-induced NF-κB survival signaling (Figure 3B
and Table S2). IL-18 is a proinflammatory cytokine of the interleukin-1 family, expressed in
several cell types, including, but not limited to, macrophages, dendritic cells and epithelial
cells. It is also involved in the regulation of immunomodulatory cytokine networks that me-
diate host defense, inflammation and tissue regeneration [91]. Regarding the transcription
factor NF-κB, it integrates several stress signals and can regulate DNA transcription, cell
survival, as well as immune system and inflammatory responses in a pleiotropic manner.
NF-κB pathways are triggered by PDT and regulate the interplay between the immune
system and an anti-cell death response through the release of cytokines and chemokines
and the control of apoptosis or necrosis [92]. Intriguingly, IL-18 can also activate NF-κB;
therefore, it is possible that the effects of carbon ions and alpha particles revolve around a
complex inflammatory and immunomodulatory network, where NF-κB occupies a central
hub position suggested also by Hellweg (2015) [93]. Taking into account that higher LET
radiation can cause a higher level of DSBs and DNA damage clusters [94], it would be
interesting to further investigate if these pathways may stand at the crossroads of high
LET-specific DNA damage and the immune response [95,96].
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We also observed that carbon ions activate transcripts involved in axon guidance and
cell migration [96]. This finding is consistent with studies suggesting that cell migration
and apoptosis in normal and tumorigenic tissues is regulated by many axon guidance
molecules [97]. Notably, tumor-intrinsic activation of genes indispensable for neuronal
development and neurological function is a nearly universal phenomenon in cancer, which,
depending on the cancer type, can have either a negative or a positive effect in disease
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initiation and progression [98,99]. To date, it remains a terra incognita as to whether some
radiotherapeutic modalities also trigger this phenomenon. Another hypothesis is that
the axon guidance processes identified in Figure 3B reflect associations between IL-18
and neuroinflammation and neurodegeneration (which are conditions further related
to high-LET irradiation [100]). IL-18 is constitutively expressed in resident cells of the
central nervous system (CNS), supporting a local IL-18-dependent immune response that
can influence neural tissue homeostasis [101,102]. Investigating how carbon ion beams,
compared to other radiation types, may activate neuronal pathways, and how this reflects
to the tissue microenvironment and the crosstalk of the irradiated cells with surrounding
neuronal and immune cells, remains a subject of fruitful research. Dissecting the connection
between therapeutic radiation and the co-option of neuronal programs in the irradiated
cells could provide invaluable insights for increasing the therapeutic efficacy of radiation
and ameliorating any side effects on healthy tissues.

3.3. Radiation Type-Specific Disease Pathways Inferred from Transcriptomes of Irradiated Cells

An analogous analysis of the overrepresented human disease pathways that are asso-
ciated with irradiation-responsive transcripts indicated relatively distinct disease profiles
across radiation types (Figure 3C and Table S3). In detail, liver dysfunction pathways are
dominant upon X-ray irradiation (Figure 3C and Table S3), perhaps as a sequalae of the
critical function of this organ in the protection against induced stress, hence indicating a
sensitivity of the liver upon radiotherapy. Another vital organ that might be affected is the
heart since carbon ion irradiation was found to be associated with atherosclerotic disease
(Figure 3C and Table S3), in agreement with clinical reports that patients who have under-
gone radiotherapy are at increased risk for cardiovascular diseases (CVDs) [103]. Since
IL-18 participates in atherogenesis [104], the increased incidence of CVDs might reflect the
activation of IL-18 signaling pathways that are associated with this radiation type. These
findings suggest that increased monitoring, further investigation and timely treatment
might be required in order to prevent these unwanted effects. Proton-based therapy ap-
pears to be related with inflammation and fever (Figure 3C and Table S3), two mild side
effects that are amenable to clinical management. Energetic carbon and alpha particles are
associated with reperfusion injury (Figure 3C and Table S3), a type of ROS-induced tissue
damage occurring when blood supply returns to tissue after a period of ischemia or hypoxia.
Interestingly, single-dose radiotherapy coupled with early tumor ischemia/reperfusion
can lead to tumor lethality via the inactivation of homologous recombination [105]. Hence,
occurrence of this side effect in patients undergoing radiotherapy might be an indicator of
selective tumor radiosensitization and increased therapeutic efficiency. In conclusion, our
analysis reveals radiation type-specific side effects and possible comorbidities that call for
increased surveillance for relevant patient complaints after radiation treatment.

3.4. Machine Learning-Generated Gene Signatures of Cell Sensitivity to High- Versus Low-LET
Radiation Types

One issue in the clinic is the selection of individual patients for high- or low-LET
radiation treatment, which is in turn dependent on the radiobiological properties of the
tumor [106]. In this regard, transcriptomics data of irradiated cells can infer radiosensitivity
predictors, whereby differentially expressed genes are ranked on the basis of certain evalu-
ation criteria, and then an optimal subset of genes is selected [107]. Although insightful,
previously described methods may pose limitations in gene selection, as the produced
gene signatures may not accurately capture the relationship between the selected genes
and the precision of the classification. To bypass these limitations, we applied machine
learning, a robust computational method that holds promise to reduce the complexity of
whole genome gene expression patterns and produce manageable signatures of response
while simultaneously taking into account several important selection criteria [108]. We
used a recently-developed algorithm based on recursive feature elimination (RFE), which
creates gene sets recursively and then determines an optimal subset, aiming to obtain
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the smallest possible sets of variables in an iterative way while discarding those genes of
least importance [36]. To verify the ability of the algorithm to generate gene signatures
linked to the features of interest, we initially ran a control test in DEGs of cancer versus
normal tissues that are included in the RadBioBase. The algorithm predicted correctly a
number of markers of tumor initiation and progression, such as CD44 [109], MMP9 [110],
CDC20 [111], FOS [112] and WNT5A [113] (Figure S1). Several of these genes are also
associated with sensitivity to radiation, as confirmed by further comparisons versus our
previously published comprehensive lists of molecular determinants of radiation response
in cancer tissues [114]. Having assured the accuracy of the algorithm in our datasets, we
proceeded to generate a gene signature (Figure 4A) for high- versus low-LET radiations,
using clinically relevant criteria such as post-irradiation time and dose on the data of
RadBioBase. The five types of radiation were grouped into two groups because the larger
the dataset, the more information the machine learning algorithm can capture, thereby
enhancing its predictive performance. This led to the identification of a 22-gene signature
that is characteristic for the response to high-LET as opposed to low-LET irradiation. GSEA
analysis showed that the most significantly enriched (FDR < 0.05) processes of those genes
are cell cycle, cell division and inflammation.
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A further STRING analysis of this signature revealed that twelve of those genes/proteins
appear to interact (Figure 4B) and mediate cell cycle, cell division and/or inflammation
(Figure 4B, genes with red, blue and green color-coding), thereby accurately reflecting the
main processes known to be induced by LET. Among these genes, we were able to iden-
tify several recently-characterized effectors of radiosensitivity, such as RAD51-associated
protein 1 (RAD51AP1), which plays an integral role in homologous recombination by acti-
vating RAD51 recombinase, and its knockout is shown to induce radiosensitivity [115]; TTK
protein kinase, the inhibition of which radiosensitizes basal-like breast cancer cells through
impaired homologous recombination [116]; the DNA methyltransferase 3B (DNMT3B),
an epigenetic modifier that protects centromere integrity by restricting R-loop-mediated
DNA damage [117], and its silencing can restore the p53/p21 signaling pathway via DNA
demethylation [118]; and TRAIP, a novel RAP80-interacting protein that is necessary for
translocation of RAP80 to DNA lesions and promotes homologous recombination in re-
sponse to DNA damage [119]. This signature also revealed novel genes that are associated
with the response to radiation, for example, the Spindle And Kinetochore Associated
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Complex Subunit 3 (SKA3) and the Rac GTPase Activating Protein 1 (RACGAP1). Future
clinical validation of this signature in tissues from patients that have undergone high-LET
radiation therapy can define indicators of responsiveness in this therapeutic modality
towards improving patient selection.

3.5. Low-Dose Irradiation Is Associated with Cytokine Cascades, While High with ROS Metabolism

Thus far, the implementation of new technologies in radiotherapeutic treatment has
been largely empirical and driven by the belief that increasing doses will increase cure [1].
Consequently, in a large number of studies, high doses have been preferentially used
to address the effects of irradiation on tissues. However, increased doses pose clinical
risks for acute and/or chronic toxicities, without substantially enhancing the therapeutic
benefits. Moreover, there is emerging evidence that low doses can be beneficial against
several pathological entities. For example, in cancer, low-dose irradiation reverses resis-
tance to immunotherapy by reprogramming the TME of immune-cold tumors [120], while
in COVID-19-induced pneumonia, it induces antiinflammatory responses [121]. To further
explore whether low doses could have therapeutic potential, we mined the RadBioBase
database for differences in transcriptomes induced at different doses. The database con-
tains entries from 37 studies using doses over 5 Gy, 2 studies using less than 0.5 Gy and
3 studies using both. For our analysis, we particularly considered the entries with a value of
0.3–0.5 Gy as “low” and those with a value of 0.6–2.0 Gy as “high” since these correspond
to the clinically relevant low/high dose ranges. A GSEA analysis for the 445 genes found
commonly deregulated at the 0.3–0.5 Gy range, underscored a profound overrepresentation
of cytokine and inflammatory response pathways, implying that low doses are capable of
inducing inflammation-related cascades. This is distinct from effects at high doses, where
the 668 genes commonly responding to the 0.6–2.0 Gy range are associated with ROS
metabolism (Figure 5 and Table S4). Following a gene-centric approach, we found many up
or/and downregulated cytokines and interleukins, as well as other inflammation-related
genes, deregulated at “low” doses. These include, but are not limited to, the upregulation
of antiinflammatory genes IL4 and TNFA1P3, and downregulation of the proinflammatory
genes IL12B and CDK5R2. Nevertheless, genes that can exert both anti and proinflammatory
activity depending on cell content, for example, IL1A, IL1B, IL6 and CXCL3, appear to be
upregulated at low doses in the original dataset, implying a complex cytokine profile at this
range. The transcription of cytokines and other secreted molecules mediating intercellular
communication (e.g., CCL3, CCL4, CXCL2, IL22, TNF, IL18R1, IL7R and IL13RA2, IL13
and IL10) were also deregulated at high doses. Hence, low doses alter the transcription of
secreted factors, but the composition of these factors is distinct compared to that of the high
dose. In support, it was recently shown that high and low doses of irradiation induce dif-
ferent secretome profiles [122]. Given that our analyses are inevitably based on a relatively
small number of available studies at low doses, further comprehensive characterization
of the secretomes of low-dose irradiated cells is required to confirm these findings and
decipher the inflammatory molecules with bona fide effects from those related to toxicities
and radioresistance [123]. Considering that different doses/types induce different kinds
of DNA damage, future high-throughput identification and functional characterization of
the secretomes of cells irradiated with several types and/or doses holds promise to unveil
links between intrinsic cell damage and the effects on adjacent and remote tissues, which
can be translated into improved clinical patient management.
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4. Conclusions

The effects of irradiation are cell-intrinsic and cell-extrinsic, with the ability to re-
program the microenvironment both proximal and distal to the irradiated sites. Each
irradiation type is suspected to cause different initial DNA lesions and activate distinct
DDR/R components, inducing cell–cell interactions that ultimately lead to distinct immuno-
genic effects on cancer cells and on remote normal tissues. Predicting and characterizing the
track of localized and systemic effects for each radiation type and dose can help fine-tune
radiotherapy used alone or in combination with chemo- or immunotherapies, in a way that
is less empirically-based and more guided by solid clinical and radiobiological data. To
this end, comprehensive comparisons of changes in gene expression across normal and
cancer cells for the several types and/or doses of radiation have a high clinical value for
informing and improving decisions for radiotherapy. To address these novel challenges,
we developed a database, termed RadBioBase, that can provide systemic insights into
the attributes of irradiation relative to gene transcription in mammalian tissues. Further
extending and updating this database to include additional tissue types in the future is
anticipated to provide a cornerstone for the in silico prediction of the beneficial and toxic
effects of radiation locally and systemically, which can be translated to more efficient and
safer radiotherapy schemes. On the one hand, analyses of transcriptome changes in cancer
cells can reveal novel pathways that enhance the response to radiation and/or awaken the
immune system against the tumor cells. On the other hand, analyses of normal tissues can
indicate genes associated with radiation type-specific side effects.

Notably, our database is designed to provide correlations between irradiation and
the full-length transcripts of genes. At this point, it should be mentioned that several
genes can synthesize isoforms or mutant forms with distinct or even opposing functions.
Members of the TP53 family constitute such representative cases. For example, while
wild-type TP53 induces radiosensitivity, expression of its missense mutants correlates with
radioresistance [124]. Similarly, TP73, a sibling of TP53, synthesizes not only full-length
TAp73 isoforms, which sensitize cells to irradiation, but also N-terminal truncated isoforms
that are generated via aberrant splicing or alternative promoter usage at the 5’end and
act as dominant negative inhibitors of their TAp73 counterparts, favoring resistance to
radiation [125,126]. In cases of such genes, where their various protein products exert
divergent effects on DDR and radiosensitivity, our database detects general associations
with irradiation, without deciphering among the functionally divergent isoforms. The
involvement of alternative forms or gain-of-function mutants needs to be subsequently
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addressed in a more detailed, gene-centric manner, using complementary targeted next
generation sequencing approaches.

Last but not least, the COVID-19 pandemic has changed our world by accelerating
new digital and virtual reality megatrends in healthcare and setting in motion a dynamic
that is expected to last and reform society and science at several levels. These changes
are now more than ever before extrapolated to radiotherapy, a field that has historically
evolved by taking advantage of contemporary technological trends. An important lesson
taught is that central databases that share and disseminate information can improve global
digital healthcare at several levels [127]. In line with this trend, our initiative to collect and
systemically organize all available molecular information on the responses of mammalian
tissues to irradiation can become a useful means for driving radiation oncology towards a
new exciting digital health era.
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