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ABSTRACT
INTRODUCTION: Triazolopyrimidinones are a type of compound

METHODS: An electrochemical setup that incl
auxiliary electrode was used in this study. The e
and dsDNA was evaluated using differenti

oxidation of S1-TP and S2-TP was irre
between Ss-TP and dsDNA resultedsi

iffusion-controlled. Additionally, the transfer of electrons in S3-TP was controlled by adsorption. The interaction
es in the dsDNA peak potential. The dSDNA peak potential shifted negatively after interaction with S1-TP, S2-TP, and
mits for S1-TP, S2-TP, and S3-TP were 1.5 pg/mL, 1.0 pg/mL, and 2.0 pg/mL, respectively.

our experimental data, we concluded that these molecules can be used as drug molecules for their remarkable effects on DNA.
NA, Drug-DNA Interaction, Triazolopyrimidinone, Heterocyclic compounds.
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1. INTRODUCTION
Triazolopyrimidinones, a class of fused pyrimidinone-triazole heterocyclic ring systems, are considered privileged scaffolds in me
bioactivity of the triazolopyrimidinone bearing compounds has been reported as FABPs, ferrochelatase, and PAS Kinase inhibito Additionally, triazolopyrimidinones
and triazolopyrimidines with purine bioisosteric analogues are reported to have anticancer activity through various mechani

triazolopyrimidine ruthenium(II) complexes show anticancer activity on various cancer cell lines, and these complexes bi oove of DNA or intercalate it (4)
In another study, triazolopyrimidine copper(Il) complexes and their DNA intercalating capacity were analyzed with absorpti d fluorescence spectrums (5). The results
suggested that the complexes were intercalated into DNA strands as well as their damage through metallonuclease 3 et al. discovered a selective and highly

soluble triazolopyrimidone derivative molecule as an NLRP3 inflammasome inhibitor using in silico pharmacoph hich could be used as an inhibitor for the

treatment of inflammatory diseases (6).
Drug and drug candidates can interact with DNA in several ways, and the interaction between them cambe determin various instrumental methods such as circular
dichroism (CD), nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), viseosity measurements, infrared spectroscopy (IR), mass spectrometry

(MS), molecular docking, and electrochemical methods (7—15). Morawska et al. developed a voltamn
its interaction mechanism with ds/ssDNA, and compared their method with spectrophotometric anal
performance compared to spectrophotometry in terms of LOD and linear range (11). In another stud
studied employing FTIR, UV—Vis, and CD. According to spectroscopic results, mitoxantrongfp 0 DNA from guanine (N7), thymine (O2) and cytosine (O2)
locations (16). Electrochemical methods are preferred due to their rapidness, high selectivi nstg@mentation cost, simple operation, and portability. They could reveal
the chemical properties and potential toxic effects of drug candidates and determin 2sses (17).

The main interaction modes between the drug molecules and DNA can be simply cl aler
is irreversible, inhibits the functions of DNA, and leads to cell death. Contrarily t binding is reversible, and they are sub-classified as electrostatic, groove, and
intercalative bindings. Electrostatic binding results from the interactions of po ands with the negatively charged DNA phosphate backbone structure.
Groove binding is also sub-categorized as minor and major grove binding whi nds bind to the minor or major groove of DNA by van der Waals or and hydrogen
bonds. Small ligands could bind to DNA via unique binding sites and thi s intercalation. In this mode, Intercalators containing planar heterocycle groups
could slide and stack between base pairs of DNA and stabilize the du ing the base pair or forming covalent bonds.

Our study is the first report analyzing the electrochemical properties olopyrimidinone derivatives as purine analog chemical structures. First, we investigated the
electrochemical properties of novel drug candidates, and then th, h dsDNA was analyzed with voltametric methods as Differential Pulse Voltammetry (DPV)
and Cyclic Voltammetry (CV). Experimental parameters, e.g. n of drug candidates, and scan rate were examined for revealing the analytical properties of
these novel drug candidates. Stability tests were performe al storage conditions and within different days to observe the shelf life of the drug candidates.

2. MATERIALS AND METHODS
2.1 Materials

The salmon sperm DNA used in this experiment (8
1,2,4-triazole (Merck, purity > 97%) and chlorof (Alfa esar-Acros Orgamcs purity > 99%) were used as received without further purlﬁcatlon The buffers were prepared
using analytical grade chemicals form varig companies as Carlo Erba, Alfa Thermo Fisher Scientific, and Isolab. In the experiments, we used 0.5 M Acetate
.4) buffers involving 0.02 M NaCl and 0.05 M Tris-EDTA (TE, pH: 8.0) bufter.

thod to observe the electrochemical behavior of tenofovir and
% the electrochemical method showed better analytical
1) 7

2.2 Instrumentation
Analytical thin layer chromatogra
NMR spectra were reported wit
coupling constants (J) were p
(multiplet). HR-MS were dete

ercury plus NMR (Varian Inc.) spectrometer at 400 MHz for 'H and 100 MHz for '3C using DMSO-d6 as solvent. The
7 (Hz) without internal standard. Splitting patterns were designated as follows: s (singlet); d (doublet); t (triplet); p (pentet) and m
ent 6200 Series TOF and 6500 Series Q-TOF LC/MS System with ESI (+) ionization. Microwave irradiation (MW) synthesis of



the compounds was conducted on Milestone MicroSYNTH (Milestone S.r.1.) microwave apparatus. PalmSens4 handheld analyzer with PSTrace 5.8 'software were used for
electrochemical studies. Pencil graphite electrodes were employed as working electrodes. To complete the three-electrode system, a platin ire and an Ag/AgCl electrode
were employed as auxiliary and reference electrodes, respectively.

2.3 Experimental

2.3.1 General Synthesis of Drug Candidates

The synthesis steps are shown in Figure 1.

Synthesis of substituted triazole

5-(4-metoxyphenyl)-3-amino- 1,2 4-triazole was synthesized according to reference (18). In the first step, aminogu icar te and 4-metoxybenzoyl chloride were
reacted. Later, the amide derivative underwent cyclization to yield 5-(4-metoxyphenyl)3-aminotriazole.
Synthesis of Si1-TP

5-(4-metoxyphenyl)-3-amino-1,2,4-triazole (10 mmol) and ethyl 4-chloroacetoacetate (20 mmol) we ixed in 18 m acid (MW, 20 min, 180°C). The formed solid
1)-[1,2,4]triazolo[1,5-a/pyrimidin-7(3H)-one,

which was used in the next steps without purification.

Synthesis of S>-TP and S3-TP
In the last step of the synthesis, the nucleophilic substitution of the obtained Si-TP with pipe
derivatives namely, piperidine/morpholine (2 mmol) were stirred in 16 mL DMF in, the pres
30 min, 95°C). The excess of Cs2CO; was filtered, and the filtrate was concentrate
over silica gel 60 (70-230 mesh ASTM, Merck) with chloroform:methanol (10:2) a
%.

S2-TP: 2-(4-Methoxyphenyl)-5-(piperidinomethyl)-[1,2,4]triazolo[1,5-a]pyri
S3-TP: 2-(4-Methoxyphenyl)-5-(morpholinomethyl)-[1,2,4]triazolo[ 1,5-a]pyr

NH 7_N
. H,CO.
HNLN/NH, OO 4 &
2 H \ H
o)
0 & I

S,-TP

ine yield S2-TP and S3-TP. Si-TP (1 mmol) and amine

ol caesium carbonate (Cs2COs3) using MW irradiation (150 W, 15-
gssure. This mixture was further purified by column chromatography
ere recrystallized from methanol or acetone. The crude yield is 40-45

X: CHy §,-TP
X:0, S;-TP

Figure 1. General synthesis scheme of t
The characterization results are
2.3.2 Electrochemical Investi

rimidinone-triazole derivatives: Si-TP, S>-TP, and S3-TP.
1 mentary information.
Drug Candidates




) ug/mL of drug

+1.4 V potential for 30 s was applied to activate and clean the PGEs. 1000 png/mL of dsSDNA was prepared with TE buffer and diluted witl
asuring cell. Activated

candidates were prepared in dimethylformamide (DMF) and diluted to with proper buffers. These solutions were then added to the ele
PGEs were dipped in these solutions, and DPV measurements were performed.

2.3.3 Interaction
Solutions containing 50 pg/mL of dsSDNA and 10 pg/mL of drug candidates were mixed in ACB (pH: 3.8 for Si-TP/DNA,
solutions were then placed in the thermal shaker at 600 rpm and 45°C for 30 min. Then, 100 pL of this interaction solutio

in the interaction solutions for 30 min. Then, DPV measurements were performed.

2.3.4 Measurement
DPV and CV measurements were performed from + 0.4 and + 1.4 V at 100 mV/s scan rate with 0.5 s interval ti @ imental steps are illustrated in Figure 2.

Sl-TP SZ-TP 53-TP dsDNA
"\'\ .

+1.4V, 30s.

pH: 5.6 for S3-TP/DNA). The
e tubes. The PGEs were dipped
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, Interaction of dSDNA with Si-TP, S2-TP and S3-TP, and DPV measurements.

RESULT
Figure 2. Experimental steps: Activation
3. RESULTS AND DISCUSSION
3.1. Synthesis of Compounds
Three novel drug candidates wer, es ow:

5-(Chloromethyl)-2-(4-meth henyl)=[1;2,4]triazolo[1,5-a]pyrimidin-7(3H)-one (Si1-TP).



Yellow solid; yield, 52 %; m.p., 113 °C; '"H-NMR (DMSO-ds, 400 MHz) & 8.02 (d, J = 8.7 Hz, 2H), 7.07 (d, J = 8.8 Hz, 2H), 6.16 (s, 1H),
NMR (DMSO-ds, 100 MHz) 6 161.6, 156.1, 151.8, 128.7, 114.8, 100.4, 55.8ppm; C13H11CIN4O2 HRMS m/z: 290.0552 (Calcd for 290.0:
2-(4-Methoxyphenyl)-5-(piperidinomethyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7(3H)-one (S2-TP)
Yellow solid; yield, 30 %; m.p., 128 °C; 'H-NMR (DMSO-ds, 400 MHz) §8.01 (d, J = 8.7 Hz, 2H), 6.99 (d, J = 8.8 Hz, 2H), 5.63 O (s, 3H), 3.30 (s, 2H), 3.23 (s,
2H), 2.34-2.42 (m, 2H), 1.50 (p, J = 5.5 Hz, 4H), 1.34-1.43 (m, 2H) ppm; *C-NMR (DMSO-ds, 100 MHz) & 162.39, 160.28
65.34, 55.59, 54.70, 26.19, 24.47 ppm; C18H21N502 HRMS m/z: 339.16979 (Calcd for 339.16952).
2-(4-Methoxyphenyl)-5-(morpholinomethyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7(3H)-one (S3-TP)

Yellow solid; yield, 35 %; m.p., 103 °C; '"H-NMR (DMSO-ds, 400 MHz) & 8.02 (d, J = 8.9 Hz, 2H), 6.99 (d, J= 8.9
3.28 (s, 2H), 2.37-2.47 (m, 4H) ppm; *C-NMR (DMSO-ds, 100 MHz) § 161.27, 160.51, 160.34, 159.55, 158.65, 42
53.91ppm; C17HIINS03 HRMS m/z: 341.14814 (Calcd for 341.14879).
The designed compounds were synthesized in three steps (Figure 1). The structures of the final comp@unds were det by spectral analyses and the spectroscopic data
signal between 6 5.63—6.16 ppm. The methylene
ppm. Proton signals of the benzene ring and

als in the 3C NMR of the compounds were in accordance with

3.81 (s, 3H) ppm; 1*C-

cyclic amines were identified in the expected chemical shifts with expected divisions. The observed
the target compounds. The amide carbon signal was observed between § 161-162 ppm in *C NMR
The purity of the compounds was determined with HRMS spectra. The HRMS data were in
the calculated value of a parent-derived ion. S2-TP and S3-TP were introduced earlier in the 9), while the full spectral characterization of these compounds was for
the first time introduced in this article.

3.2 Electrochemical Properties of Drug Candidates

In this part, the electrochemical behaviors of the drug candidates were analyzed 1s quite important for the metabolism of drug molecules, the effect of pH on

the oxidation signals of drug candidates was examined and the obtained resultsfwere show gure 3.
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Figure 3. (A) Effect of pH on pe en phs: drug candidates in different pH values, 3.8 to 7.4. (B) DPV voltammogram of Si-TP, S2-TP, and S3-TP prepared in

ACB (pH: 3.8 for S;-TP and S , an .6 for S3-TP.



For the pH study in DPV, drug candidates were prepared using buffers with pH ranges from 3.8 to 7.4. As shown in Figure 3A, Si-TP and
and the highest currents were obtained at pH 3.8. S3-TP showed the highest electrochemical signals at pH 5.6. Thus, pH 5.6 was chosg
(Figure 3A).

At pH 3.8, the oxidation peak potentials of Si-TP were detected at 1.03 V and 1.15 V. As it is more stable and higher, the signal ¢
oxidation signal for further studies. At pH 3.8, S2>-TP gave two oxidation signals at 0.79 V and 1.11 V. At pH 5.6, the oxidati

.03 V was chosen as the main
s of S3-TP were observed at 0.76

V and 1.04 V (Figure 3B). All oxidation signals were shifted to lower potentials with pH. These shifts in peak potentials f gs de ate that protons participate in the
oxidation process of drugs (20).

As shown in Figure 3B, all drug candidates have oxidation capacity. Triazolopyrimidinone structure could form tria by an H atom shifting, tautomerization.
Several factors could contribute to the stability between two tautomers, e.g., substitution, aromaticity, hydrogen b olvation. The redox mechanism of these novel

ituted amines might also contribute to the
oxidation potency of the compounds, e.g., they could change the oxidation potency. Considering the olic tautome ion of the heteroaromatic ring and the amine

substitution, the title compound could possess oxidative properties.
In the second part of our study, DPV measurements were performed at different concentrations of tes at 100 mV7s to determine the analytical concentration
ranges for the drug candidates (Figure 4).
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quan on (LOQ) depend on the specific method used, but generally, LOD is calculated as 3 times the
ibration curve (m), while LOQ is calculated as 10 times the standard deviation of the response divided by

Figure 4. Calibration graphs for (A) Si-TP, (B) S>-TP, and (C)
The formulas for calculating Limit of detection (LOD) and li

the slope of the calibration curve’.
LOD = 3s/m

LOQ = 10s/m

LOD and LOQ were determined from Figure 4.
LOQ were calculated from the concentrations
S2-TP are 1.0 pg/mL and 3.4 pg/mL, resy
are 0.9990, 0.9988, and 0.9930 for S:-T1
The effects of scan rate (V) on pe rre

d S>-TP, LOD and LOQ were calculated from the concentrations 5, 10, 15, and 20 pg/mL. For S3-TP, LOD and
20 pg/mL. LOD and LOQ for Si-TP are 1.5 pg/mL and 5.0 pg/mL, respectively (Figure 4A). LOD and LOQ for
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Figure 5: Effect of (A) scan rate and (B) scan rate root on peak current, and (C) scan rate on the log
As shown in Figure 5A, the anodic peak current (Ip.) has a linear relationship with scan rate

Si-TP: Ipa (nA) = 0.374v + 17.666 (R’=0.9990) (Equation 1)

S>-TP: Ipa (nA) = 0.1316v + 6.2628 (R’=0.9880) (Equation 2)

S3-TP: Ipa (nA) = 0.2254v + 2.2687 (R’=0.9980) (Equation 3)

As shown in Figure 5B, peak current (Ipa) also has a linear relationship with the 1
Si-TP: Ipa (nA) = 203.97v1"2 — 7.7443 (R’=0.9928) (Equation 4)
So-TP: Ipa (nA) = 72.771v12 = 2.9923 (R?=0.9977) (Equation 5)
S3-TP: Ipa (nA) = 1229512 — 13.05 (R’=0.9920) (Equation 6)

In Figure 5C, log(Ipa) and log(v) linear relationship was presented wi
Si-TP: log Ip. = 0.5716log v + 2.3213 (R’=0.9937) (Equation 7)
S»>-TP: log Ip. = 0.5996log v + 1.899 (R’=0.9987) (Equation 8)
S3-TP: log Ip. = 0.8568log v + 2.2551 (R°=0.9978) (Equation

can rate (v'?):

nge between 25 mV/s and 150 mV/s:

tical value, e.g., 0.5, indicating the diffusion-controlled processes, while for the theoretical value 1, the
process is adsorption-controlled (21). Slopes of Equatio ion 8 were determined as 0.5716 and 0.5996, respectively, which indicates that electrochemical
oxidations of Si-TP and S»-TP are diffusion-controlled

controlled for S3-TP.

3.3 INTERACTION

The intrinsic electro-activity of adenine and . e generally used as an indicator for drug-DNA interactions. In the next step of our study, we studied the
interaction of drug candidates with dsD DNA solutions were prepared with TE buffer (pH: 8.0).

The stock drug solutions were prepared diluted with ACB (pH: 3.8 for Si-TP and S»-TP, and pH: 5.6 for S3-TP). The final concentrations of dsDNA and Ss-TP

were 50 pg/mL and 10 pg/mL, respectiv
solution was transferred into tub
at 50 mV/s scan rate in the ab,
vs. Ag/AgCl.

resence of drug candidate molecules. The analytical signals associated with the guanine bases of DNA were obtained at ~1.0 V
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Figure 6. Differential pulse voltammograms of guanine oxidation currents of dsDNA after interactiofWith (A) Si-TP; -TP, and (C) S3-TP. Experimental steps are: PGE
g p g g . . . . . p .
R 600 rpm at 4 for 30 min, Adsorption: 30 min, and DPV

measurement within a range between 0 and +1.4 V at 50 mV/s in ACB.
In Figure 6A, two distinct oxidation signals associated with dsDNA in ACB (pH: 3.8) were obtained

the peak potential of dsDNA shifted to +0.89 V and +1.16 V, respectively. On the other hand
negatively from +0.92 V to +0.89 V. Oxidation signals of dsSDNA in ACB (pH: 5.6) were o
dsDNA slightly shifted toward smaller values, e.g., +0.90 V and +1.16 V (Figure 6C).
S3-TP. Here, positive or negative shifts on peak potential can reveal the interaction
associated with intercalative binding, while negative peak potential shifts are associ
between ibrutinib (IBR) and dsDNA using electrochemical and molecular docki
less positive potentials as a result of electrostatic interaction (23). In our study
electrode process (24). The reason for this shift could be explained by electros

and +1.18 V In the presence of S3-TP, the peak potentials of
potentlals shifted negatively after interacting with S;-TP, S2-TP and
the drug candidate and dsDNA. Positive peak potential shifts are

ak potential towards the negative could be attributed to the irreversible
between Ss-TP and dsDNA.

A With the relative standard deviation (RSD) 5.45%, 3.76% which decreased to 1.30 pA and 3.11

s ea ents of dssSDNA were found as 4.94 pA and 4.86 pA with RSD 1.68%, 4.54% which

RS 0, 5.23%, due to the binding of S>-TP to dsDNA, changing the dsDNA structure. Figure 6C
currents of dSDNA. Here, the peak currents of dsSDNA are as 5.42 pA with RSD 2.97%, and 5.58 pA

07 nA with RSD 5.22%, 1.66 pA with RSD 9.13%, and 5.03 pA with RSD 4.68%

In Figure 6A, the peak currents of dsDNA were found as 3.95 pA_an
PA after the interaction with RSD 3.12%, 4.87% (n=5). In Fig
increased, e.g., 6.92 pA with RSD 3.95%, 7.62% and 8.08
demonstrates that S3-TP caused a significant change in th
with RSD 7.66% while after interaction we determined t
3.4 STABILITY
Stability is one of the most important factors tha
The stock solutions of drug candidates were fres
and 30 days. Here, Si-TP and S3-TP exhibi
reduction in the percentage of current fo
noticeable change in the percentage cu
and 30, e.g., the current value of S
be very advantageous for long-t

e rela efficacy of drug candidates. To evaluate the stability of the drug candidates, we performed DPV (Figure 7)
y prepared and stored in dark at room temperature (25 °C). Stock solutions of drug candidates measured within 0, 5, 7, 14,
ility'for 30 days of storage without significant percentage changes in current values, e.g., we observed a slight
v day 0 and 30. At the end of day 30, the percentage of the current value for Si-TP was determined as 91%. A
was observed at day 30, e.g., 48%. In contrast, minute changes in current values of S>-TP were observed between day 7
86% at day 30. These results proved that the stock solutions of drugs were stable for 30 days, except S2-TP, which could

g their pharmaceutical properties.
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Figure 7. Change in current for Si-TP, S2-TP, and S3-TP examined at 25 °C for di
91%, 48%, and 86% by the end of 30 days, respectively.
4. CONCLUSION
In conclusion, in this article, we for the first time studied the full characterizati
the literature, while S>-TP and S3-TP compounds were reported in the literature for only e1r screenlng act1v1ty agamst FABPs (Patent No WO 2010/056630 Al) We
introduced the synthetic pathway and full spectral characterization data g
and their interactions with dsSDNA using DPV and CV. We showed t
potential shifted negatively after the interaction with Si-TP, S2-TP, ai

2., 0,9, 7, 14, and 30. Percentage current values of drug candidates were

-TP—dsDNA resulted in significant changes on dsDNA peak potential. dsSDNA peak
e shift of dsSDNA peak potential reveals the interaction of Ss-TP with DNA supporting the
ore positive values indicates that DNA-drug interaction mechanism is intercalation, while
anism is an electrostatic mode. Our study also showed that electrochemical oxidation
iffusion. In addition, the electron transfer process was an adsorption-controlled process for S;-TP. We
DNA-drug interaction that could be very advantageous to analyze new drug compounds and their

the shift towards more negative value indicates that DNA-dru
processes of S1-TP and S»>-TP were irreversible and contro
believe our study can provide critical information for un
potential effect on target biomolecules.
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Data Sheet. HRMS data of S1-TP @
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