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Abstract

The latest advances in high-throughput techniques during the past decade allowed the systems biology field to expand
significantly. Today, the focus of biologists has shifted from the study of individual biological components to the study of
complex biological systems and their dynamics at a larger scale. Through the discovery of novel bioentity relationships,
researchers reveal new information about biological functions and processes. Graphs are widely used to represent
bioentities such as proteins, genes, small molecules, ligands, and others such as nodes and their connections as edges
within a network. In this review, special focus is given to the usability of bipartite graphs and their impact on the field of
network biology and medicine. Furthermore, their topological properties and how these can be applied to certain biological
case studies are discussed. Finally, available methodologies and software are presented, and useful insights on how
bipartite graphs can shape the path toward the solution of challenging biological problems are provided.
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Background

Today, in the big-data and OMICS era, established high-
throughput technological advances, integrative biology, and
bioinformatics have significantly changed our view on how
to tackle difficult biological problems toward the understand-

ing of more complex biological systems. For example, yeast-
two-hybrid [1] and protein chips [2] have enabled biologists
to experimentally detect the complete protein interactome or
protein–protein interactions (PPIs) for certain organisms [3–7].
Microarrays and RNA-seq [8] have accelerated the discovery of
differentially expressed genes across different conditions (i.e.,
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disease vs control) and the study of developmental processes,
as well as pharmacogenomic responses and the evolution of
gene regulation in different species. In this way, through the
generation of gene regulation networks, new knowledge about
gene behavior and unknown functions can be unraveled. Fur-
thermore, the latest drug screening and mass spectrometry
techniques allow for a massively parallel protein–compound
interaction identification and exploration, whereas genome se-
quencing technologies [9] have exponentially increased the
number of newly sequenced genomes. Therefore, exploration
and discovery of new genes, new lineages of life, identification of
single nucleotide polymorphisms (SNPs) or variations causative
for genetic disorders [10], population genetics, characterization
of the genetic material recovered from environmental metage-
nomic samples [11], and direct interspecies genome compar-
isons have opened new research fields while, simultaneously,
have changed the landscape of bioentity associations knownun-
til today.

PPIs, gene expression, gene regulation, literature co-
occurrences, evolutionary relationships, signal transduction,
metabolic pathways, and others are often captured in network
representations, where a node represents a bioentity and
an edge the relationship between them. PPIs, for example,
are represented as simple undirected graphs, whereas gene
signal transduction and regulation networks as directed graphs
(digraphs). Additionally, gene expression networks can be
found as weighted graphs, pathways as petri-nets, and gene
regulation together with literature co-occurrences as semantic
graphs. Finally, multi-edged networks can hold information
about nodes that are connected in multiple ways. For exam-
ple, 2 proteins might co-occur in biomedical literature, share
common domains, have a certain degree of sequence similarity,
be evolutionary related, and interact physically. For a better
understanding of the definitions of the aforementioned net-
works, as defined by graph theory, more detailed descriptions
are available elsewhere [12,13].

In this review, we thoroughly discuss the potential and the
usability of bipartite graphs for analyzing biological networks.
To our knowledge, this is the first extensive investigation into bi-
partite graphs, given that other studies have focused on generic
graph analysis. A bipartite graph, also referred to as a “bigraph,”
comprises a set of graph vertices decomposed into 2 disjoint sets
such that no 2 graph vertices within the same set are adjacent.
As discussed by Burgos et al. [14] and Kontou et al. [15], applica-
tions of such bipartite graphs can range from the representation
of enzyme-reaction links inmetabolic pathways to gene–disease
associations or an ecological network. While network analyses
have focusedmainly on unipartite (1-mode) networks, consider-
ably less attention has been paid to the deeper study of bipartite
networks and their potential in biological sciences.

Many nonbiological real-world networks may be naturally
viewed and modeled by a bipartite graph structure. Perhaps
the oldest example of such bipartite network originates from
the analysis of Deep South data, also known as the “Southern
Women” data, collected in 1941, representing a set of women
attending social events over a period of 9 months [16]. Other
notable examples studied extensively in the literature include,
for instance, the actors–movies network, where each actor was
linked to the movies he/she appeared in [17,18]; the scientists–
papers network, where the scientists were linked to the papers
they authored [18–20]; the board–directors network, where the
members of the board of directors are linked to the compa-
nies they lead [21,22]; the peer-to peer exchange networks in
which peers are linked to the data they provide [23]; the world
cities hosting branches of multinational firms [24]; the supreme

court justices joining majority opinions [25]; and the legislators
sponsoring bills [26]. Moreover, during recent years, the bipar-
tite graph has been used extensively in internet technology and
applications since it has been used tomodel the relationship be-
tween queries and URLs in query logs [27], between video shots
and tags [28], for entities and co-lists in web pages [29], for users
and items in recommendation [30], for behavior analysis of in-
ternet traffic [31], and for detecting network traffic anomalies
[32].

The current review is structured as follows: we provide a
mathematical definition of a bipartite graph; we comment on its
topological properties; we summarize several projection strate-
gies to generate 2 unipartite networks from a bipartite network;
we discuss the theoretical properties and the importance of
the projections, as well as the potential biological applications
of them; we describe several real-life network types and how
these can be analyzed using the graph theory related to bipartite
graphs; we describe models and algorithms for bipartite graphs;
and, finally, we comment on the advantages of available soft-
ware dedicated to analyze bipartite networks.

Bipartite Graphs
Definition

A graph G = (U, V, E) is bipartite (or bigraph or 2-mode network) if its
vertices can be divided into 2 disjoint sets, U and V, such that ev-
ery edge (E) connects a vertex in U to 1 in V (Figure 1A, B). Vertex
sets U and V are usually termed as the parts of the graph. Equiv-
alently, a graph that does not contain any odd-length cycles is
by definition a bipartite graph, whereas bipartite graphs are also
equivalent to 2 colorable graphs. Among the various types of
graphs, trees, acyclic graphs, and circular graphs with an even
number of vertices, are by definition bipartite. A bipartite graph
represents a special case of a k-partite graphwith k= 2. If a bipar-
tite graph is not connected, it may have more than 1 bipartition;
in this case, the (U, V, E) notation is helpful in specifying 1 par-
ticular bipartition that may be of importance in an application.
If |U | = |V|, that is, if the 2 subsets have equal cardinality, then
G is called a balanced bipartite graph. If all vertices on the same
side of the bipartition have the same degree, then G is called
biregular.

Bipartite graphs can be efficiently represented by biadjacency
matrices (Figure 1C, D). The biadjacency matrix B that describes
a bipartite graph G = (U, V, E) is a (0,1)-matrix of size |U| × |V|,
where Bik = 1 provided there is an edge between i and k, or Bik = 0,
otherwise. Biadjacency matrices can be used to describe equiv-
alences between bipartite graphs, hypergraphs, and directed
graphs. In most cases, biadjacency matrices are (0,1)-matrices
and the networks are, therefore, unweighted. However, in some
applications, as in the case of ecological networks,matriceswith
Bik > 1 are also used to represent a weighted bipartite network.

Properties of bipartite graphs

Bipartite graphs, as opposed to generic networks that have
their own topological characteristics, comprise a distinct cat-
egory with their very own unique properties. Given that
network metrics for unipartite networks have been studied
extensively, herein attention is given to network metrics used
specifically for bipartite graphs. A short commentary on such
topological features is provided below [12,33,34]. Of note, there
are dozens of specialized metrics for bipartite ecological net-
works, some of which are discussed in-depth by Dormann et al.
[35]. Notably, known tools dedicated to automated topological
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Figure 1: Construction of unipartite networks from a bipartite network. (A) The bipartite network. (B) The biadjacency matrix of the bipartite network. (C) The first

unipartite networkwith its adjacencymatrix. (D) The second unipartite networkwith its adjacencymatrix. The adjacencymatrices are symmetrical across the diagonal
line.

analysis for generic networks are the Network Analysis Profiler
(NAP) [36], Cytoscape’s Network Analyzer [37], the Stanford Net-
work Analysis Platform (SNAP) [38], and the igraph library ([39]).
Although these are not bipartite graph-specific, they do offer a
wide spectrum of functions and modules related to topological
analyses.

Degree
In a simple undirected graph, the degree or degree centrality is
defined as the number of edges incident upon a node. Nodes
with the highest degree (i.e., connected to more nodes) are con-
sidered as “hubs.” In a directed graph, the degree can be calcu-
lated as the sum of the in-degree (number of incoming edges)
and the out-degree (number of outcoming edges). As opposed to
a fully connected graph G = (V, E), which can have a maximum

of |V|(|V| − 1)/2 connections, in a bipartite graph, the maximum
degree of a node can be equal to the number of nodes from the
opposing set (max[deg(u)]= |V| ormax[deg(V)]= |u|). Furthermore,
the sum of the degrees of the first part is equal to the sum of the
degrees of the opposing part, and both are equal to the cardinal-
ity of the edge set:

∑
v∈V

deg(v) =
∑
u∈U

deg(u) = |E |

Closeness centrality
Closeness centrality is a measure to determine whether a node
can communicate with other nodes within the network readily
and through short paths. Hence, the more central a node is, the
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closer it is to all other nodes. Closeness centrality is inversely
proportional to the shortest path length between 2 nodes. In a
bipartite graph, a node can have a minimum distance “1” from
vertices of the opposing set and “2” from vertices of the same
set. Moreover, due to the bipartite structure, all paths between
nodes of the same set are of even length, a property that rather
complicates the calculation of several measures.

Betweenness centrality
The nodes with high betweenness centrality are the ones that
serve as bridges between 2 highly connected communities. An
all-against-all shortest path calculation is often required in or-
der to estimate betweenness centrality reliably. Hence, each
node increases its centrality score every time it is involved in a
shortest path. The nodes with very high betweenness centrality
scores are the ones that serve as mediators between 2 or more
neighborhoods. In a bipartite graph, paths can originate and ter-
minate at a node of each vertex set.

Eigenvector centrality
Eigenvector centrality is ameasure to identify the nodes that are
connected to “important nodes,” such as hubs, within a network.
The eigenvector centrality of a node is proportional to the sum
of centralities of the nodes it is adjacent to. Bipartite eigenvector
centrality is further reviewed by Daugulis [40].

Clustering coefficient. The global clustering coefficient indicates
the tendency of a network to form tight clusters. Similarly, the
local clustering coefficient shows the tendency of a node to be-
long to a cluster. While this is a useful measure for a generic
network, applying the 2 clustering coefficients directly to a bi-
partite network is meaningless. Handling a 2-mode network as
a 1-mode network is not recommended, as projected 2-mode
networks tend to have more and larger fully connected cliques
[41]. Moreover, the conventional clustering coefficient cannot be
used in bipartite networks, where cycles of size 3 are absent. In-
stead, other coefficients based on the fraction of cycles with size
4 have been proposed, with similar clustering properties [42]. To
overcome such problems, a number of clustering coefficients for
2-mode networks have been proposed elsewhere [33,42–45].

Nestedness Nestedness is an important property of ecological
networks. It is usually defined as a pattern of interactions in
which “specialists” (e.g., pollinators that visit few plants) inter-
act with subsets of the species with which “generalists” (e.g.,
pollinators that visit many plants) interact. Nestedness is not
a metric in itself but a concept that, at least to date, has not
been formally defined throughmathematical relationships. This
probably explains the fact that there are several distinct metrics
by which it can be measured. In mathematical terms, nested-
ness can be defined as a property of the previously mentioned
biadjacency matrix B. If B is a perfectly nested binary matrix,
then there exists a permutation of rows and columns such that
the set of edges in each row i contains the edges in row i+1, while
the set of edges in each column j contains those in column j+1.
In particular, the rows and columns of B can be sorted (with B1,j

> 0 ∀j and Bi,1 > 0 ∀i) such that Bi,j ≤ min(Bi,j-1, Bi-1,j), a property
that can be extended to quantitative matrices as well [46]. Thus,
in general, a nested structure corresponds to a systematic ar-
rangement of non-zero entries in the binary matrix often used
to represent a network. However, measuring the nestedness of a
given network is not always straightforward, and there are sev-
eral detection methods for identifying nested patterns among

other possible matrix arrangements [47]. A schematic represen-
tation is shown in Figure 2.

The most widely used metric of nestedness is the nested-
ness temperature, T = 1 − N, which quantifies whether the ob-
served arrangement of 1’s and 0’s deviates from the arrangement
given by an isocline that describes a perfect nestedness bench-
mark. Contributions of unexpected absences and presences in
the upper-left and bottom-right sides, respectively, are weighted
by their squared Euclidian distances from the isocline [48]. Sim-
ilar metrics have been presented by Araujo and coworkers [49],
whereas fast algorithms and software for calculating Twere pre-
sented by Guimarães and Guimaraes [50].

An additional metric, C, is based on the concept of “species
richness” and, unlike T, quantifies nestedness exclusively be-
tween rows [51].

NODF (nestedness metric based on overlap and decreas-
ing fill) was developed later in order to overcome 2 major dis-
advantages of previous methods: marginal totals may differ
among columns and/or rows and the presences (1’s) in less-filled
columns and rows may coincide with those found in the more-
filled columns and rows, respectively. Therefore,NODF has some
important features that distinguish it from the preceding met-
rics, i.e., it calculates nestedness independently among rows and
columns, which allows the evaluation of nestedness only among
sites (i.e., species composition) or among species (i.e., species
occupancy), whereas it is able to evaluate how nested 1 or more
columns (or rows) is in relation to other ones [52].

A modified version of NODF, termed WNODF (where “W”
stands for “weighted”), was also developed later to handle quan-
titative matrices [53] Other approaches have also been devel-
oped for the same task, including methods that rely on the
eigenvalues and the spectral radius of the matrix [46,54].

Modularity Modularity is another feature usually found in eco-
logical networks. Modularity occurs when certain groups of
nodes (usually species) within a network are much more highly
connected to each other than they are to other nodes of the
network, with weak interactions among different modules (Fig-
ure 3). Modularity measures the tendency of a network to divide
into modules (also called groups, clusters, or communities). In
networks with high modularity, the nodes within modules are
densely connected but sparsely connected in different modules.
The most widely used measure of modularity is calculated from
the (symmetric) adjacency matrix A by:

Q(A) = 1
W

∑
C∈P

∑
i, j∈C

[
Ai j − kikj

W

]

Where W = ∑
i,jAij and ki = ∑

jAij is the degree of node i. The
indices i, j run over the nodes of the graph, whereas C runs over
the communities (modules) of the partition. Since the adjacency
matrix is not symmetric, A = (O, B/BT, O) can be applied. Hence,
modularity enables the detection of modules (or clusters) in the
first place, and it can be further optimized by particular opti-
mization algorithms to detect community structure in networks
(see below) [55].

Of particular note, networks can be both highly nested and
highly modular [56] (Figure 4).

Internal links and pairs. Ausual approach for the analysis of bipar-
tite graphs consists of deriving unipartite graphs (projections)
from the underlying bipartite structure (Figure 1C and D). How-
ever, this is associated with important loss of information and
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Figure 2: Network nestedness. Example of (A) a bipartite network, (B) the biadjacency matrix of the bipartite network, and (C,D) the projected unipartite networks.

data storage issues (a detailed description of projection is pro-
vided below).

Allali and coworkers [57] introduced the internal links and
pairs as metrics useful for analyzing a bipartite graph, thereby
providing an understanding of the projection of the bipartite
graph. Specifically, in a bipartite graph G = (U, V, E), (u, v) is a
U-internal (⊥-) pair of G only if by adding the new link (u, v) to G
does not change its U-projection; it is a U-internal link provided
that the removal of the link (u, v) from G does not change its U-
projection. The number of U-internal links of a node is called “U-
internal degree.” The authors illustrated the relevance of these
concepts in several real-world bipartite networks, highlighting
their discriminative ability when benchmarked against random
graphs. Internal links and pairs can be useful metrics for both
modeling complex networks and storing them in a compact for-
mat [57].

Bipartivity Many biological systems are naturally modeled as
bipartite networks. However, there are also networks that al-
though they are not naturally bipartite, they appear to be closer
to bipartite compared to what can be expected by a completely
random network; for instance, networks formed by 2 types of
nodes that have a preference for interactions with nodes of the
other type, such as networks of sexual relationships. It is pos-
sible to test whether a graph is bipartite and to return either
a 2-color graph (if it is bipartite) or an odd cycle graph (if it is
not) in linear time by using a depth-first search algorithm. The
main idea is to assign to each vertex a color that is different
from the color of its parent in a depth-first search tree in a pre-
order traversal of the tree. In this way, a 2-color spanning tree
consisting of edges connecting vertices to their parents is gen-

erated, although some of the non-tree edgesmay not be properly
colored.

Bipartivity is ameasure that quantifies how close a given net-
work is to being bipartite. Two suchmeasureswere provided first
by Holme and coworkers [58]. The first measure is based on the
optimal 2-coloring of the network [58]. The exact value of this
quantity is Nondeterministic Polynomial time (NP)-complete;
therefore, an optimal calculation is not possible. They proposed
instead an approximate solution by a simulated annealing ap-
proach. The latter is based on the count of odd circuits that, in
most cases, can be calculated in polynomial time. Later, Estrada
and Velásquez provided a different measure, β(G), based on the
spectral decomposition of the biadjacencymatrix [59]. Thismea-
sure is easy to compute and allows the calculation of individual
node contributions to global bipartivity, which is based on the
concept of closed walks. Pisanski and Randić have taken into
consideration the so-called Szeged index (Sz) and the revised
Szeged index (Sz∗), both of which can be considered general-
izations of the Wiener number to cyclic structures. They found
that the quotient of the 2 indices, termed σ (G), can be used as
a novel measure for characterizing the degree of bipartivity of
networks because the 2 indices assume the same values for bi-
partite graphs but different values for nonbipartite graphs. Thus,
they proposed σ (G) = Sz/Sz∗ as a measure of bipartivity and they
also provided empirical evidence that it is in good agreement
with β(G) [60].

Ecological indices. In this section, some metrics that are rou-
tinely being used in ecological bipartite network analysis are
mentioned. The symbol L indicates the number of realized
links, whereas |U|and |V| denote the number of species of each
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Figure 3:Networkmodularity. Example of (A) a bipartite network, (B) the biadjacencymatrix of the bipartite network, and (C, D) the corresponding unipartite networks.

party in bipartite networks (e.g., hosts [U] vs. parasites [V]).
Connectance (C) is the fraction of all possible links that are real-
ized, C = L/(|U | ∗ |V|)), which represents a standard measure of
food web complexity. The related linkage density is defined as D
L/(|U | + |V|).

In a foodweb of |U | consumers and |V| prey species, themean
number of prey species (links) per consumer is termed gener-
ality, given by G = L/|U |, and the mean links per prey vulner-
ability, given by V = L/V|. The web-asymmetry defines the bal-
ance between numbers in the 2 levels and it is given by W
= (|V| − |U |)/(|U | + |V|), where positive numbers indicate more
low-trophic level species and negative more high-trophic level
species. Most of these metrics also have a weighted counter-
part, whereas there are also several other metrics designed for
quantitative interactions, such as Shannon’s evenness (for mea-
suring interactions), H2 (a network-level measure of specializa-
tion based on the deviation of a species’ realized number of in-
teractions and that expected from each species’ total number of
interactions), and niche overlap (the mean similarity in the inter-
action patterns between species of the same trophic level). The
reader can refer to key publications for more information on the
topic of ecological indices [35,61].

Projection

In a bipartite network, the nodes are divided into 2 disjoint sets
(U, V), and the edges (E) connect nodes that belong to different
sets. From a bipartite network, it is possible to derive 2 projected
networks, where each one is composed of only 1 set of nodes.
This approach for analyzing bipartite networks is termed “pro-
jection,” i.e., deducing relationships between nodes of the same
type. In other words, in order to study the relationships among

a particular set of nodes, the bipartite network has to be com-
pressed by 1-mode projection.

The U 1-mode projection (“U-projection” for short) is com-
posed of a network containing only U-nodes, where 2 U-nodes
are connected when they have at least 1 common neighboring
V-node. Conversely, the V-projection is a network of V-nodes
in which 2 V-nodes are connected when they have at least 1
common neighboring U-node. Some authors argue that bipar-
tite projections are easier to analyze compared to their origi-
nal bipartite network because they are 1-mode networks and
hence there is no need to develop new techniques to analyze
the bipartite networks. However, because bipartite projections
are usually weighted networks, the analysis of these projec-
tions is not so straightforward. Projecting a bipartite network
into a 1-mode network merely transforms the problem of the
analysis of a bipartite structure into the problem of analyzing
a weighted one, not an easy task. Indeed, the projection trans-
formation is associated with loss of information, including the
specific identity of the V-nodes responsible for the linkages be-
tween U-nodes. Nonetheless, bipartite projection constitutes an
important methodological tool in network science, and its use
is recommended in cases where processing a natively 1-mode
network is impossible or impractical.

In particular, a |U | × |V| biadjacency matrix B, defining a bi-
partite network G = (U, V, E), can be projected onto an |U | × |U |
unipartite (U-projected) or 1-mode network, denoted by PU, as
BBT (the projection on V, denoted as PV, is similarly obtained
by BTB). The ability to construct unipartite networks from bi-
partite ones in this way also leads to the question whether the
mathematical properties of the projected networks can be in-
ferred only by knowing the bipartite structure. Several authors
have studied themathematical properties of such projected net-
works in relation to the properties of the bipartite network. One
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Figure 4:Mixed network (nested + modular). Example of (A) a bipartite network, (B) the biadjacency matrix of the bipartite network, and (C, D) the projected unipartite
networks.

important feature of the edge weights constructed this way in a
projected network is their constrained range of possible values.
The range of weight values of an edge between nodes i and j in a
bipartite projection (Wij) can be expressed as a function of these
nodes’ degrees (i.e., ki and kj) and the total number of nodes of
the other partition (|U |):

min (ki , kj )− (|U | − max (ki , kj )) ≤ Wij ≤ min (ki , kj )

However, in general, higher-degree nodes tend to have
stronger edges compared to lower-degree nodes. Additionally,
it is widely known that the degree distribution of the nodes
in a partition of a bipartite network influences the degree dis-
tribution of its 1-mode projection on that partition. Moreover,
Mukherjee and coworkers have shown that in a projected net-
work, the degree distribution of the other partition (V) also has
a very strong influence on the degree distribution of the 1-mode
projection on U [62]. They also showed that if partition U cor-
responds to a peaked distribution, then it is possible to de-
rive closed-form expressions for the 1-mode degree distribution.
Other authors went a few steps further in order to calculate
the degree distribution analytically [63,64]. The most complete
treatment was given by Nacher and Akutsu [64] who studied the
case of scale-free distributions for both sets of nodes (denoted
by S-S) and that of scale-free and exponential degree distribu-
tion (denoted by S-E) for the 2 sets of nodes. They presented a

mathematical analysis demonstrating that it is possible to infer
the degree distributions of projected networks given the infor-
mation contained in the original bipartite network, thereby de-
riving some simple relationships. For instance, a bipartite net-
work with 2 sets of nodes with degree distributions PU(k) ∝ k−γ 1

and PV(k) ∝ k−γ 2 exhibits a V-projection that follows a power-
law kmax(−γ 1+1 , −γ 2) for node degree, where γ1 and γ2 indicate
the power law exponents of the distribution of U and V nodes,
respectively, in the bipartite network. On the other hand, a bipar-
tite network with 2 sets of nodes with degree distributions PU(k)
∝ k−γ 1 and PV(k) ∝ exp(−λk) leads to a V-projection, defined by
a power-law k−γ 1+1 node degree distribution. The analytical re-
sults were confirmed by computer simulations performed using
artificially constructed networks [64].

Various methods of bipartite network projection have been
proposed in the literature [17,33,65–70], and they all involve the
use of a threshold, and, in most cases, they yield weighted
unipartite networks. Usually, edges, the weights of which ex-
ceed the threshold value, are retained, while those with weights
that are below the threshold value are omitted. The methods
greatly vary, however, on the way threshold values are identi-
fied. The simplest and most widespread approach for extract-
ing the backbone of bipartite projections is through the appli-
cation of an unconditional (or global) threshold. In particular,
a single weight threshold is selected and applied to all edges
in the bipartite projection, and edges are retained in the back-
bone network only if their weight in the bipartite projection
exceeds this predefined threshold. The most commonly used
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weight threshold of zero preserves all edges with a non-zero
weight, whereas others have used different thresholds, includ-
ing these sets at the percentage of the maximum observed edge
weight or at the mean observed edge weight. The unconditional
threshold approach, although widely used, suffers from several
shortcomings. In general, if the presence of any shared connec-
tions to V-nodes is considered adequate for inferring that an
edge exists between 2 U-nodes, then an unconditional thresh-
old should be used for backbone network extraction. If, how-
ever, an instance of shared V-nodes is not sufficient to infer that
an edge exists between 2 U-nodes, then unconditional thresh-
old backbones may be problematic. The structure of a backbone
extracted by using an unconditional threshold depends heav-
ily on the selected threshold value; moreover, certain structural
features of unconditional threshold backbones of bipartite net-
works are systematically biased. Thus, this approach in which
a universal threshold is applied indiscriminately to all edge
weights can yield a 1-mode projection with several undesirable
properties [66].

Several methods with thresholds conditioned on the U-
nodes’ degree are available and include in the backbone edges
the weights of which exceed weight values expected in a
null model. All methods begin with a standard projection and
then use a statistical model to assess the significance of the
weights [71,72]. Some methods involve normalization of the
edge weights in the bipartite projection in a way that adjusts U-
nodes’ varying numbers of interactions with V-nodes and trans-
forms the edge weights into measures that assess the tenden-
cies or revealed preferences to co-occur. To this end, Bonacich
suggested normalization [73], and Borgatti and Halgin used the
Pearson correlation coefficient [74], whereas other methods re-
lied on the hypergeometric distribution to perform a test for the
statistical significance of edge weights, conditioned on each U-
nodes’ number of interacting V-nodes (i.e., row marginals in the
bipartite network) [66,75,76].

Although the aforementioned methods are used for the im-
provement of unconditional thresholds, they have also been
criticized because they implicitly treat V-nodes interchange-
ably. In such cases, those methods are not suitable for infer-
ring U-nodes’ relationships because they fail to consider V-
nodes’ differing degrees. To overcome the limitations of uncon-
ditional and U-nodes’ degree conditioned threshold approaches,
a null model is required to identify the distribution of expected
edge weights that would be observed if U-nodes were linked to
V-nodes randomly. This linking process is conditioned on (or
constrained by) both the U-nodes’ and V-nodes’ degrees. The
most widely used model is the fixed degree sequence model
(FDSM), which compares the observed projection edge weights
to the distribution of possible edge weights that might be ob-
served if all U-nodes’ and all V-nodes’ degrees were fixed at
their values in the empirical data. For instance, Zweig and
Kauffman presented a systematic approach that evaluates the
significance of the co-occurrence for each pair of nodes [70].
In principle, the FDSM yields a distribution of expected edge
weights that is conditioned on both U-nodes’ and V-nodes’ de-
grees. However, in practice, FDSM risks overconditioning or im-
posing too many assumptions on the null model. To address
this problem, Neal proposed the stochastic degree sequence
model (SDSM) method that uses a Monte Carlo approach to as-
sess the statistical significance of edge weights against a null
model that is conditioned on each U-nodes’ number of interact-
ing V-nodes and each V-nodes’ number of interacting U-nodes
(i.e., both row and column marginals in the bipartite network)
[67].

Bipartite Biological Networks

In this section, a brief description of the most important classes
of biological networks that possess a native bipartite structure
and data and the methods pertinent to bipartite biological net-
works used are provided. The objectives of the analysis in each
case and the specific outcomes obtained from such analyses
are outlined. The bipartite networks described below were arbi-
trarily classified by the authors into 4 broad categories, namely,
ecological networks, molecular networks, biomedical networks,
and epidemiological networks.

Ecological networks

Ecological networks (Figure 5A) are representations of the biotic in-
teractions in ecosystems inwhich species are indicated by nodes
that are connected by pairwise interactions that can be either
trophic or symbiotic. Ecological networks are used to describe
and compare the structures of real-world ecosystems. These
network models are used to investigate the effects of network
structure on properties such as ecosystem stability. A funda-
mental goal of ecological research is to unravel the mechanisms
that influence the stability of fragile ecosystems. Thus, the re-
lationship between ecosystem complexity and stability is a ma-
jor topic of interest in ecology. The use of ecological networks
makes it possible to analyze the effects of the network proper-
ties described above on the stability of an ecosystem. Ecologi-
cal networks can be further subdivided into 3broad types: food
webs (FWs), mutualistic webs (MWs), and host–parasitoid webs
(HPWs). Although all 3 types contain trophic interactions, stud-
ies of FWs, according to themost strict definition, typically focus
on predator–prey interactions where consumers that are usually
bigger than their resources are involved [77].

Traditional FWs originate from the population biology school
of thought and they focus on trophic links among organ-
isms, particularly predator–prey and primary consumer-basal
resource feeding relationships. Historically, research in ecologi-
cal networks began from descriptions of trophic relationships in
aquatic FWs. However, recent work has explored FWs, as well as
webs of mutualists, and, as a result, several important proper-
ties of ecological networks have been identified. The energy flux
through the web and the relationships between mass and nu-
merical abundance of each species are common themes inves-
tigated in FWs. In general, FWs have high complexity, measured
as connectance (i.e., the proportion of all possible links that are
realized in a network), and smaller size compared to other bi-
ological networks [78]. Of note, FWs can have a native bipartite
structure only when 2 layers are involved (i.e., plants and her-
bivores). However, quite often, they consist of ambiguously de-
fined trophic levels connected by a number of links of intraguild
predation and thus cannot be viewed as a single bipartite graph.
In such cases, in order to perform analyses that rely on the bi-
partite structure (such as for nestedness), one needs to extract
and analyze the bipartite subwebs embedded in them [79].

HPWs also originate from the population biology school of
thought but they concentrate on a special type of predator–
prey relationship, namely, between parasitoids and their hosts
[80]. The term “parasitoid” is used to describe insects (usually
parasitic wasps) that develop as larvae on the tissues of other
arthropods (usually terrestrial insects), which they eventually
kill. These networks are particularly well suited for a quantita-
tive analysis because the number of hosts killed and the num-
ber of parasitoid individuals produced can be observed directly.
Another advantage of these networks is that they are usually
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Figure 5:Overview and examples of various types of networks. (A) Ecological networks. An example of a predator–prey (left) and host–parasite example (right) network.
(B) Biomedical networks. An example of a disease–gene (left) and a drug–target (right) network. (C) Biomolecular networks. An example of a gene–transcription factor
binding site (left) and a gene–pathway (right) network. (D) Epidemiological network. An example of a patient–location network.

resolved at the level of species, avoiding potential problemswith
the use of “trophic species” of FWs, in which species that share
predators and prey are clustered together. An obvious disadvan-
tage of these networks is that they, by definition, focus on a small
subset of the ecological community and are therefore not well
suited for studying energy fluxes through the ecosystem [81].

MWs are used to study ecosystem properties relevant to pol-
lination and seed dispersal, rather than population dynamics or
energy fluxes. Among the various MWs studied in the literature,
a significant portion is devoted to pollination networks, which
depict the interactions between plants and their animal polli-
nators [82]; frugivore networks, which contain the interactions
between plants and their animal seed dispersers; and ant–plant
networks, which examine the interactions between plants that
provide food and/or shelter for ants, which in turn provide pro-
tection for the plants [83]. Specialism tends to be a common fea-
ture inmostMWs, at least compared to FWs, and this is probably
even more the case for endosymbiotic systems. Most networks
of plant–animal mutualism involve a small number of species.
An analysis of 52 mutualistic networks showed that their nest-
edness is high. This pattern suggests a scale-free network. Thus,
inmutualistic networks, the edges are not placed randomly. Fur-
thermore, species communities with higher complexity (greater
number of interactions) nestedness increase with the complex-
ity (number of interactions) of the network, since for a given
number of species, communities with more interactions are
markedly more nested [84].

Nestedness, as we have already discussed, is considered to
be an important topic in the study of ecological networks. A bi-
partite network, such as the one between plants and their mu-
tualistic animals, is nested if specialists interact with species
that form well-defined subsets of the species that generalists
also interact with. A nested structure usually implies that there
is a core of generalist species interacting among themselves
and a tail of specialists interacting with most of the general-
ist species [84]. Within FWs, especially in aquatic systems, nest-
edness appears to be related to body size, because the diets of
smaller predators tend to be nested subsets of those of larger
predators. There seems to be 2 extremes, these are freshwa-
ter FWs that tend to have many generalists and HPWs that
tend to have many specialized parasitoids. The nested struc-
ture of mutualistic networks is suggested to play a role in net-
work stability. Additionally, recent analyses have shown that
ecological networks are also modular and that the modular-
ity co-occurred with nestedness [85]. Moreover, the correlation
between nestedness and modularity depends on network con-
nectance [56]. Although mathematical and computational anal-
yses have suggested that nestedness increases species richness
as well, an empirical analysis of 59 datasets representing mu-
tualistic plant–pollinator networks showed that this statement
may be incorrect. A simpler metric, the number of mutualistic
partners of a species, has been found to be a much better pre-
dictor of species survival and, hence, community persistence.
These results suggest that nestedness is, at best, a secondary
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factor rather than a causative one for biodiversity in mutualistic
communities [86].

The degree distribution of ecological networks is also debat-
able among scientists. The type of degree distribution (expo-
nential or power-law form) is typically considered indicative of
the overall architecture of the network. Early works suggested
that the distribution of connections, P(k), is skewed with long
tails indicative of power-law scaling. Such features suggest that
communities might be self-organized in a nonrandom fashion
that might have important consequences in their resistance to
perturbations (such as species removal) [87]. Others have in-
dicated deviations from the “scale-free” topologies, a fact that
is thought to result from nonmatching biological attributes of
species that prevent the occurrence of certain interactions (the
so-called forbidden links). Large-scale analysis for topological
patterns in 29 plant–pollinator and 24 plant–frugivore networks
showed that most of the plant–animal mutualistic networks
show species connectivity distributions following a truncated
power-law (broad-scale networks) and only a few show scale-
free properties. It is suggested that plant–animal mutualistic
networks follow a build-up process based on the preferential
attachment of species [88]. The skewed degree distributions of
bipartite mutualistic and antagonistic networks are usually as-
sumed to show that ecological or co-evolutionary processes con-
strain the relative numbers of specialists and generalists in the
network. Such constraints in adding links, including morpho-
logical mismatching between mutualistic partners, restrict the
number of interactions established, thereby resulting in devia-
tions from scale invariance. Other simplermodels that do not re-
quire the existence of nonmatching species traits have also been
proposed [89]. Finally, differences have been found between the
degree distributions of mutualistic and antagonistic networks,
suggesting that different processes are restricting these 2 classes
of networks, especially the largest mutualistic networks. Proba-
bly, spatial and temporal heterogeneity largely affect the struc-
ture of the larger networks [90].

Of particular note, early ecological networks (e.g., FWs) were
binary networks that merely depicted the presence or absence
of feeding interactions and not the quantity of those inter-
actions. This lack of quantification has been long recognized
as a weakness in ecological network research, since not all
species and interactions are equally important because not all
are equally abundant. The availability of quantified webs high-
lighted the importance of link strength, establishing the notion
that the strength of the interaction plays an important role in
stability, with many weak and few strong links leading to sta-
ble but potentially complex webs. More recently, the focus has
shifted again from exploring the magnitude of complexity and
the strength of interactions to approaches for understanding the
specific configuration of complexity (e.g., clustering, the impor-
tance of loops or motifs, and so on) [77]. All of the above are also
verified by the analysis of the trends in establishing newmetrics
and algorithms suitable for quantitative networks, as well as the
development of new methods for community detection or eval-
uation of the dynamic properties of the system (see below) [91].

Biomedical Networks

Contrary to ecological networks, biomedical bipartite networks
(Figure 5B) are more abstract since the one partition of the net-
work is usually composed of molecular components found in
cells and the other of various indicators of human diseases.
In particular, the one partition is usually composed of genes

(or their protein products), drugs, or environmental exposures;
the opposing partition is usually comprised of diseases, symp-
toms, or adverse drug effects. Thus, biomedical networks have
introduced the network analysis techniques into the classical
biomedical literature, since they use methods of network anal-
ysis in order to model factors that influence human diseases,
traditionally analyzed with standard statistical methods. There-
fore, this network-based approach in medicine offers a plat-
form to explore not only the molecular complexity of a single
disease but also to explore the molecular relationships among
distinct pathophenotypes, identify new disease susceptibility
genes, uncover the biological significance of disease-associated
mutations, and identify drug targets and biomarkers for com-
plex diseases [92].

The gene–disease network (diseasome), the archetype of this
type of network, is a bipartite graph in which the first set of
nodes consists of diseases and the opposing one of disease-
associated genes [93]. A disease and a gene are connected by a
link only if the gene is implicated in the particular disease. Given
a bipartite network, one can construct by projection the hu-
man disease network, i.e., the network of human diseaseswhere
diseases with common genetic components are connected, or
the human disease gene network, i.e., the network of human
genes where genes participating in common human disorders
are connected. The first diseasomewas created based on the list
of human disorders, disease genes, and associations between
them obtained from the OMIM (Online Mendelian Inheritance
in Man) database by Goh and coworkers [94]. However, although
OMIM is one of the major repositories holding genetic associa-
tion data for Mendelian diseases, it mainly archives rare disor-
ders of high penetrance [95]. This parameter is of importance
since multigenic diseases of low penetrance may have differ-
ent properties that have to be taken into account. Other sub-
sequent studies, such as the ones conducted by Barrenas et al.
[96] and Liu et al. [97], partially overcome this issue by inte-
grating gene-disease association data from multiple resources.
Of importance, in the study conducted by Goh et al., [94] nei-
ther the disease concepts nor the gene termswere standardized,
whereas in the studies conducted by Barrenas et al. [96] and Liu
et al. [97], an effort was made to homogenize the disease con-
cepts but not the gene terms. When data from genome-wide as-
sociation studies (GWAS) are used, one is also able to construct a
gene–phenotype network linking genetic polymorphisms to inter-
mediate phenotypes, such as cholesterol levels or blood pres-
sure [98]. Such approaches can be useful, especially in the con-
text of identifying the causal pathways linking genetic variation,
intermediate phenotypes, and diseases (Mendelian randomiza-
tion), but the data on phenotypes are rather sparse. Recently,
Kontou et al. [15], performed a similar analysis by combining
data from OMIM and 2 other primary resources containing in-
formation of gene-disease associations: the National Institutes
of Health’s Genetic Association Database (GAD) [99], which con-
tains data from genetic association studies that mostly target
multigenic diseases of low penetrance, and the National Hu-
man Genome Research Institute (NHGRI) catalog of published
GWAS [100], which includes a manually curated collection of
publishedGWAS,withmore than 100000 assayed SNPs and SNP-
disease associations. GAD and GWAS are, therefore, comple-
mentary to OMIM. Moreover, since disease name heterogeneity
and ambiguity in all 3 repositories would not allow for a direct
data comparison, the naming conventions described in the In-
ternational Classification of Diseases (ICD-10) were used. Finally,
in order to maintain a uniform nomenclature, all genes from
the 3 databases were converted to the official Human Genome
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Organisation (HUGO) Gene Nomenclature Committee [101] gene
symbols.

Such network-based approaches for the discovery of gene-
disease associations have enabled biomedical researchers to not
only investigate the genetic complexity of a particular disease
but also the relatedness among apparently discrete disease phe-
notypes [92,102]. Diseases have been found to be highly con-
nected genetically, displaying many connections between both
individual disorders and disorder classes. In other words, there
seems to be a widespread genetic relatedness across many di-
verse domains of human disorders, transcending traditional dis-
ease categorization. Moreover, disease networks can provide the
foundation for predicting causative genes, thereby unraveling a
disease’s underlying molecular mechanisms and enabling the
design of new therapeutic strategies [92,102]. Genes associated
with similar disease phenotypes have a higher propensity to
interact physically with each other, forming distinct disease-
specific functional modules [103,104]. Connections between dis-
orders are also not completely random. Rather, disorders tend
to form clusters on the basis of similar pathophysiology. Con-
versely, diseaseswith similar phenotypes have an increased ten-
dency to share genes [94]. To achieve this global connectivity,
complex diseases, such as diabetes and obesity, play the role
of “connectors,” bridging in this way disorders from different
classes. Finally, of particular note, some genes are associated
with only a few diseases, whereas others are implicated in nu-
merous diseases, and likewise, some diseases are influenced by
only 1 to 2 genes, and others are caused by dozens of genes [93].

Gene–disease networks have also been constructed for vari-
ous classes of related diseases, including autoimmune diseases
[105], neurological diseases [106], cardiovascular diseases [107],
and others. Tissue specificity is also considered in gene–disease
networks, since clinical manifestations of diseases are usually
restricted to specific tissues. Although some disease-associated
genes are expressed only in certain tissues, the expression pat-
terns of disease genes alone cannot explain the observed tissue
specificity of diseases. By extending the diseasome, a network-
based approach was used by Hayasaka and colleagues [108] to
investigate how different brain areas are associatedwith genetic
disorders and genes. In particular, the authors constructed a tri-
partite network with genes, diseases, and the affected brain ar-
eas. In the resulting network, a disproportionately large number
of gene-disease and disease-brain associations were attributed
to a small subset of genes, diseases, and brain areas. Further-
more, a small number of brain areas were found to be associ-
ated with a large number of the same genes and diseases. These
core brain regions encompassed the areas identified by previous
genome-wide association studies and suggest potential areas of
focus for the future imaging genetics research. These ideas were
implemented in the so-called disease–tissue network, which is
an obvious extension of the diseasome, in order to include in-
formation regarding tissue specificity. The primary hypothesis
here is that for a disease to manifest itself in a particular tissue,
a whole functional subnetwork of genes (disease module) needs
to be expressed in that tissue. The expression patterns of dis-
ease geneswere combinedwith the human interactome, and the
results indicated that genes expressed in a specific tissue tend
to be localized in the same neighborhood of the interactome.
On the contrary, genes expressed in different tissues are seg-
regated in distinct network neighborhoods. Most importantly,
Kitsak et al. [109] showed that it is the integrity and the com-
pleteness of the expression of the disease module that deter-
mines disease manifestation in selected tissues. This approach
led to the construction of a disease–tissue network that offers a

predictive map of the statistically significant disease-tissue as-
sociations. This approach allowed the researchers to examine
known disease-tissue relationships and predict newly definable
disease-tissue associations.

Further extending diseasome, a large-scale biomedical lit-
erature database (including PubMed and National Center for
Biotechnology Information’s [NCBI’s] MeSH terms) was used to
construct a symptoms–disease network (Human Symptoms Dis-
ease Network) and investigate the connection between clinical
manifestations of diseases and their underlying molecular in-
teractions [110]. In the projected network, the link weight of
2 diseases quantifies the degree of similarity of their respec-
tive symptoms. The authors integrated disease–gene associa-
tion and PPI data and found that the symptom-based similar-
ity of 2 diseases correlates strongly with the number of shared
genetic associations and the extent to which their associated
proteins interact. Moreover, the diversity of the clinical manifes-
tations of a given disease can be related to the connectivity pat-
terns of the underlying PPI network. Such approaches could be
useful in the identification of unexpected associations between
diseases, in disease etiology research, and in drug design.

Another important extension of the diseasome is based on
the identification of environmental factors that influence dis-
eases. The majority of diseases (especially the polygenic ones)
are, in part, caused or influenced by human interaction with
harmful environmental substances. Traditionally, epidemiologi-
cal studies have investigated such exposures, whereas the iden-
tification of gene–environment interactions represents an im-
portant area of genetic epidemiology [111]. The exposure–disease
network was compiled using a global repository of the Centers
for Disease Control and Prevention, which contains literature
surveys on matching environmental chemical substances ex-
posure with human disorders. The bipartite network contained
links from 60 substances to more than 150 disease phenotypes.
The analysis of the bipartite network and the projected networks
identified mercury, lead, and cadmium as being associated with
the largest number of disorders. On the other hand, breast can-
cer, fetal abnormalities, and non-Hodgkin’s lymphoma were
found to be associated with most of the environmental chemi-
cals. Moreover, tobacco smoke compounds, parabens, and heavy
metals tend to be connected, implying common disease-causing
factors; however, this is not the case for fungicides and phyto es-
trogens [112].

Furthermore, the diseasome was extended to include drugs.
The drugs–target network (drugome) consists of a bipartite graph
that links approved drugs with the their target proteins (the
gene products) [113]. The network produced in this way con-
nects most drugs into a highly interlinked giant component,
with strong local clustering of similar drugs. Topological anal-
yses of this network quantitatively showed an overabundance
of drugs that target already targeted proteins, confirming the
prevalence of the so-called me-too drugs on the market. To an-
alyze the relationships between drug targets and disease gene
products, the shortest distance between both sets of proteins
was measured in models of the human interactome network.
Although an enrichment for etiological drugs, which directly
target the disease-causing component, was clearly observed,
still a majority of existing drugs target components as far away
from the disease-causing genes as a random target would do,
suggesting a predominance of palliative-acting drugs. Finally,
a significant shift toward the closer-to-target drugs approved
after 1996 from those approved before 1996 was observed,
supporting a recent trend toward rational drug design [113].
The diseasome can be further supplemented by a drugome.
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Traditionally, new targets for drugs have been predicted on the
basis of molecular or cellular features, by exploiting, e.g., simi-
larity in drug chemical structure or activity across cell lines. An
inference method based on the similarity of the drug–target bi-
partite network topology similarity, managed, however, the pre-
diction of new targets for existing drugs. Thus, outperformed
both drug-based similarity and target-based similarity infer-
ence methods. By using this method, 5 old drugs (montelukast,
diclofenac, simvastatin, ketoconazole, and itraconazole) were
found to have polypharmacological effects on human estro-
gen receptors or dipeptidyl peptidase-IV, whereas simvastatin
and ketoconazole showed potent antiproliferative activities on
breast cancer cell lines [114].

In a fashion similar to the drug–disease network, the vaccine–
disease and the vaccine–genenetworkswere constructed by Zhang
and coworkers [115]. From these networks, those genes that
interact with many vaccines and, conversely, those vaccines
associated withmany genes were identified as hubs. These find-
ings correlated with existing knowledge and generated new hy-
potheses on the fundamental interactionmechanisms involving
vaccines, diseases, and genes. Similar approaches were based
on phenotypic side effect similarities (the drug–side effects net-
work) in order to infer whether 2 drugs share a target. Campil-
los and colleagues [116] tested several such unexpected drug–
drug relationships on 746 marketed drugs, validated the im-
plied drug–target relations by in vitro binding assays, and found
11 drugs that exhibited significant activity. Nine of those were
tested and confirmed in cell assays, documenting the feasibil-
ity of using phenotypic information to infer molecular interac-
tions and hinting at new uses of marketed drugs [116]. Going
a step further, a multilevel network (the process–drug–side effect
network) was built by merging the drug–biological process network
and the drug–side effect network. By analyzing the process–drug–
side effect network, meaningful relationships between biologi-
cal processes and side effects were inferred in an efficient man-
ner [117].

Biomolecular Networks

Bipartite graphs provide an appropriate abstraction to represent
relationships and associations between different classes of bi-
ological molecules and therefore have been extensively used
for studying and modeling interactions between biomolecules
(Figure 5C). Unlike biomedical networks, which represent rela-
tionships between abstract terms such as “diseases” or “phe-
notypes,” molecular networks illustrate interactions that occur
physically between biomolecules and take place inside all vari-
ous cell compartments. These interactions are reconstructed by
using computational andmathematical methods of analysis ap-
plied on multiomics data generated from high-throughput ex-
periments.

Data from high-throughput proteomics experiments (i.e.,
yeast-two-hybrid [Y2H], Immunoprecipitation-Mass Spectrome-
try [IP-MS], and tandem affinity-purification/mass spectrometry
[TAP-MS]) are extensively modeled using bipartite graphs
[118–120]. Bipartite graph models are utilized in different levels
of analysis of PPI data, including assignment of individual
peptides to proteins, as well as analysis and detection of protein
complexes.

Peptide-to-protein assignment modeling by bipartite
graphs

Any type of high-throughput proteomics experiment that uses
MS reports a list of all the detected peptides and a measure of

their abundance. The subsequent analysis requires the assign-
ment of each identified peptide to the corresponding protein
and an estimate of its abundance. Therefore, as many peptides
are assigned to a single protein and many proteins share the
same peptides, a bipartite graph between peptides and proteins
is constructed to carry out the analysis. This network between
peptides and proteins is then processed using a series of algo-
rithms that operate on this bipartite structure to find the most
appropriate protein assignment for each peptide. Inferring the
correct proteins from these complex bipartite graphs is a dif-
ficult problem; therefore, methods based on empirical Bayesian
analysis, reverse database search, and calculation of expectation
values have been developed. Even though protein identification
is the most widely used method for the analyses of MS-based
proteomics data, the available software tools for identifying pro-
teins are still not perfect [121,122]. A detailed review of available
protein identification methods is provided by Nesvizhskii [123].

Protein complexes in protein-protein interaction

The modeling of protein complexes as networks plays the most
important role in advancing our understanding of protein func-
tions and elucidating the dynamics of cellular supermolecular
organization. However, protein interaction data generated by
high-throughput experiments such as Y2H andTAP-MS are chal-
lenged by the presence of high numbers of false positives and
high false discovery rates [124]. Similar to the peptide–protein
bipartite network, co-complex relations of proteins participat-
ing in different complexes are modeled as bipartite graphs in
TAP-MS experiments. Here, each individual protein is included
in 1 set of nodes, and the set of complexes in which it partic-
ipates in comprises the second set of nodes. In recent years,
there has been a growing number of efforts to incorporate in-
terdomain knowledge to support large-scale analysis of PPI net-
works. A representative study incorporates Gene Ontology (GO)
semantic terms and topological features of the baits and prey
proteins to calculate pairwise similarities of baits and gener-
ate “seeds” of clusters. Then, each seed cluster is extended to
recruit prey proteins that are significantly associated with the
same GO terms. Next, network clique and motifs algorithms are
applied to identify the protein complexes [118]. An additional
typical technique uses network community structure detection
algorithms together with 2 well-established machine learning
algorithms to predict the protein-complex bipartite network in
Saccharomyces cerevisiae. Communities were detected by amodu-
larity detection algorithm, and the community-assistedmethod
has outperformed a neighboring assisting method [125]. A more
recent approach [126] involves a method inspired from spectral
analysis, where the network power graph analysis is applied for
the identification of complete biclique motifs. These motifs cor-
responded well to protein complexes, and a revisit of a charac-
teristic study led to the prediction of the catalytic and regulatory
subunits of the casein kinase II complex, as well as the untan-
gling and identification of new protein interactions in the nucle-
osome.

Gene regulatory networks and gene co-expression networks, real-
ized by the physical interaction (binding) of Transcription Fac-
tors (TFs) to the regulatory regions of target genes, can read-
ily be modeled as bipartite graphs, where 1 layer of nodes
represents the regulatory genes and a second layer of nodes
represents target genes. Consequently, every edge in the graph
represents a regulatory relation in the form of binding of each
regulatory gene product (encoded by the regulatory gene) to the
regulatory region of the target gene. Moreover, the respective
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weights associated with each regulatory edgemay represent the
influence or the interaction strength between a TF and the regu-
lated gene. An important property of network connectivity, i.e.,
versatility, emerges when bipartite graphs are used to describe
data derived from transcriptomics experiments. In the process
of discovering the simplest (sparser) bipartite network able to
describe the data [127], a biologically meaningful distinction be-
tween versatile and nonversatile networks was made. Versatile
networks can describe any type of data and thus are indistin-
guishable from one another, whereas nonversatile networks re-
quire a limited set of data due to constrains imposed by the data.
This limitation, however, can be utilized for the reconstruction
of network topologies and regulatory signals and to get a glimpse
into the biological meaning of the regulatory interactions.

Modeling gene transcription regulation with bipartite graphs
facilitated the development of network reconstruction methods
involving the decomposition of the gene expressionmatrix. Typ-
ically, a matrix of dimensionality NxM (N genes and M samples)
is broken down to regulatory signals and regulatory strengths.
Established matrix decomposition methods, such as principal
component analysis (PCA), independent component analysis
(ICA), and singular value decomposition (SVD), have been ap-
plied to reduce the dimensionality of the gene expressionmatrix
and, therefore, reconstruct regulatory interactions. However,
all PCA-, ICA-, and SVD-based methods use statistical assump-
tions such as orthogonality and statistical independence and
perform decompositions that are difficult to be interpreted in
biomolecular systems. Nevertheless, the bipartite network rep-
resentation of Gene Regulatory Networks (GRNs) permitted the
development of a family of methods termed network com-
ponent analysis (NCA), first introduced by Liao et al. [128].
NCA-based methods are able, under certain constraints, to
find scaled reconstructions of the gene expression matrix in
2 matrices |A| and |P |, where |A| (an NxL matrix) contains the
regulatory strengths of L regulatory genes on the N regulated
genes and |P | (an LxM matrix) contains the regulatory signals
of L regulators in M conditions. The criteria that have to be met
in order for NCA to be able to perform matrix decomposition
include full rank of the matrix |A| (full column rank of matrix |A|
must also be maintained even after the removal of a regulatory
node, which implies that each column of |A| must have at least
L-1 zeros) and full row rank of matrix |P | Modeling of GRNs as
bipartite graphs and their decomposition with NCA have been
extensively applied, as NCA’s criteria are easily fulfilled by a
broad spectrum of biological systems. For a comprehensive
review of the different algorithmic approaches and the different
biological applications of the NCA-based methods on biological
systems, see Wang et al.[ 129].

In an effort to extend NCA, Ye and coworkers incorporated
genetic variation data in the form of SNPs, together with gene
expression and ChIP-Chip data, for the concentrations and bind-
ing site affinities of TFs in a framework that predicted accurately
trans- and cis-acting SNPs. Here, the trans-acting SNPs corre-
spond to the products of regulatory genes and cis-acting SNPs
correspond to the binding sites of these products in the target
genes of the bipartite network. [130].

Furthermore, a recent method named, CONDOR [131], uses
the modular structure of the bipartite graph to associate SNPs
with genes’ functions. In brief, this method utilizes the commu-
nity structure of the bipartite graph (i.e., hubs and local clus-
ters) in order to associate expression quantitative traits loci
(eQTLs) with the genomic context. The context here is defined
not only in terms of genes in the immediate proximity of signif-
icant genetic variants but also in terms of the functionally im-
plicated genes through the bipartite network structure analysis.

The method exploits genome-wide eQTL analysis in a way that
is not restricted to the immediate neighbors of the eQTL-SNP
gene.

Furthermore, bipartite network analysis of transcription reg-
ulation has been applied to comparative studies of GRNs [132].
In this study, the projected networks of transcription factors and
regulated genes (RGs) from Escherichia coli and S. cerevisiae have
been compared to find common characteristics and differences.
The connectivity patterns of these 2 networks were found to be
very similar. To better understand the differences, randomized
versions of the original networks have been constructed. The
difference of the TF to RG ratios among species has been found
to be the most significant, highlighting a major organizational
difference in transcription regulation between prokaryotes and
eukaryotes.

Other gene expression regulation networks

The increasing availability and decreasing price of the high-
throughput experiments resulted in the generation of an
growing number of datasets that involve different types of bi-
ological entities including TFs, mRNAs, proteins, and regulatory
sequences (e.g., enhancers, repressors). Bipartite graphs provide
a suitable structure to model and analyze this wealth of data.
In a network topology analysis work, the SICORE algorithm has
been proposed [133] for the identification of regulation as well as
coregulation effects using protein arrays, miRNAs, and gene ex-
pression. In a similar multidata integrative method, data from
the human protein interaction network were combined with
those from the transcription regulatory network to characterize
coregulatory modules [134]. The method entailed a probabilistic
statisticalmodel that evaluatedwhether a cluster of coregulated
proteins is likely to form a transcriptional regulatory module in
an integrated network.

A novel class of noncoding RNAs has been discovered re-
cently, the long noncoding RNAs (lncRNAs), more than 200 nu-
cleotides in length, a feature that sets them apart from the other
small regulatory RNAs. Evidently, bipartite graphs provide a suit-
able model to study the structural roles of lncRNAs, as 1 layer
of nodes can represent the lncRNAs and the second layer the
proteins they interact with. A method termed “lncRNA–protein
bipartite network inference” has been developed recently [135]
that is proposed to be the first to allow the construction of such
networks. The method relies on the extraction of characterized
lncRNAs–protein interactions from online databases and the us-
age of a propagation technique to assign each protein a score
that is specific for each lncRNA, thereby providing a full set of
ranked lists of interacting proteins for every lncRNA.

The bipartite metabolite-reaction representation of the
metabolism is a reliable model to represent metabolic networks
and metabolomics data, where data can be assigned separately
with 1 layer of nodes representing the metabolites and the sec-
ond layer representing the reactions. This representation avoids
most of the erroneous assignments of isozymes as well as mul-
tifunctional enzymes. A tool introducing active module anal-
ysis of metabolic bipartite networks (AMBIENT) has been pro-
posed as an effective means to analyze high-throughput data in
a metabolic context [136]. Moreover, in a biomedical study [137],
bipartite KEGG pathways–gene networks have been investigated
together with the detection of differentially expressed genes
(DEGs) from microarray experiments. The approach comprised
a machine learning method that combines classification from
both DEG-derived networks and bipartite KEGG pathways. The
generated model was then applied to a series of cancer datasets
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and was able to robustly reduce the frequently high number of
false positives occurring in single DEG experiments.

To summarize, bipartite networks are invaluable inmodeling
and studying biomolecular networks for 2 major reasons. First,
they provide a straightforward abstraction as the 2 different lay-
ers of nodes correspond directly to 2 different sets of biomolec-
ular entities with distinct properties. Second, there are several
powerful analytical methods from graph theory and linear al-
gebra that, by taking into account particular types of bipartite
network connectivity, provide solutions to the data representa-
tion and complexity reconstruction problems of themultiomics,
high-dimensional, high-throughput biological data.

This section reviewed the most commonly used methods
and examples, but it remains important to highlight a unify-
ing method applicable to all bipartite biomolecular graphs, i.e.,
the power graph analysis. Power graphs are topological trans-
formations of biomolecular networks into less redundant repre-
sentations. This is achieved by exploiting the abundance of bi-
cliques as topological motifs that are elementary, essential, and
embedded in the structure of biological networks. Power graph
analysis is an analytical tool that can easily be generalized and
applied to directed, undirected, and bipartite networks [138].
However, it always returns a bipartite graph that describes a
complex, “hairy ball”–like network by bipartite structures. Power
graph analysis for the identification of protein complexes has
notable application in the analysis of bipartite GRNs. Moreover,
power graph analysis allows the decomposition of a bipartite
network into a union of significantmotifs, such as the starmotif,
the clique motifs, and bicliques [126]. This decomposition was
used to discover a hierarchy of clusters of transcription factors
linked to a hierarchy of clusters of target genes, thereby permit-
ting reproduction of the results of a laborious combined experi-
mental and computational previous study [139] where only the
bipartite network structure of the transcription regulatory net-
work in yeast was used as input.

Epidemiological Networks

Another distinct type of bipartite networks, as far as the type
of data analyzed and the goals of the analysis are concerned,
are those that are directly related to epidemiology (Figure 5D).
These networks share some features with biomedical networks,
with the focus on human diseases being the most important.
However, the main difference lies in the fact that the data are
collected and analyzed on an individual patient basis. In gen-
eral, network analysis in public health and epidemiology re-
sembles the classic approach of social networks analysis and
has been used mainly to study disease transmission, especially
for HIV infections/AIDS and other sexually transmitted diseases
(STDs) [140]. Bipartite structures can be built based on individ-
uals who are classified by gender, location, infectious agent, or
comorbidities.

In one case, the sexual contact network can be represented as
a bipartite graph, in whichmales form one part of the graph and
females the other [141]. Such approaches can be valuable in the
understanding of sexual behavior and the evolution of intimate
relationships over time [142], as well as the modeling and sim-
ulation of STDs, especially HIV infections/AIDS [143–145]. Other
theoretical studies have shown that, apart from the dependence
between the epidemic threshold and the average and variance
of the degree distribution of the network, there is a cutoff value
for the infectivity of each population, below which no epidemic
outbreak can occur, regardless of the value of the infectivity of
the other population [146].

Vectorborne diseases, for which transmission occurs exclu-
sively between vectors and hosts, can also be modeled as bipar-
tite networks. In suchmodels, theoretical work suggests that the
spreading of the disease strongly depends on the degree distri-
bution of the 2 sets of nodes and it is sufficient for 1 set to have a
scale-free degree distribution with a slow enough decay for the
network to have an asymptotically vanishing epidemic thresh-
old [147].

Another case in which the bipartite network can model the
spreading of a disease is when 1 set of nodes consists of geo-
graphic locations (clusters) in which the epidemic occurred, and
the second set consists of the infected cases within a given time
period. In this network, which is analyzed by projection, 2 lo-
cations are associated if they are both connected to common
infected cases in the same period, and the number of infected
cases is considered as the weight of the links [148].

Finally, a comorbidities network is a prominent example of an
epidemiological network. Comorbidities, i.e., the co-occurrence
of diseases, can provide valuable information regarding the un-
derlying biological mechanisms of multifactorial diseases and
can help to elucidate the effects of environmental exposures,
such as diet, lifestyle, and medication, on diseases. By linking
network dynamics to real-life data, patient data could provide a
valuable basis for generating hypotheses concerning the mech-
anisms of disease and prove useful in drug repurposing and the
development of targeted therapeutic strategies [149]. However,
this type of information is conceptually different from the one
encountered previously in biomedical networks, since it needs
individual patient data in order to be compiled. In particular, de-
tailed information from each patient is needed, and the adja-
cency matrix of the generated bipartite network closely resem-
bles the traditional epidemiological datasets (the rows represent
the patients and the columns the diseases). Projection of this bi-
partite network can also result in a unipartite network with the
correlations of various comorbidities, the so-called phenotypic
disease network (PDN) [150]. Large datasets of this type, which
could be useful for network analysis, are difficult to be found,
in general. However, since worldwide health transaction data
are now often collected electronically, disease co-occurrences
are currently analyzed quantitatively [151], and in some cases,
these data cover entire nations [152]. In the most notable ex-
ample of PDN, more than 30 million patients’ electronic health
records compiled fromMedicare claims were used. By analyzing
the co-occurrence of diseases and mortality, researchers found
that disease progression can be studied using network meth-
ods, offering the opportunity to enhance our understanding of
the origin and evolution of human diseases. Additionally, the
dataset that was made publicly available represents the largest
relational phenotypic resource that is publicly available to the
research community [150]. Such data [153] can be used in other
analytical techniques that are in use in traditional epidemiology
(e.g., in meta-analysis of summary data). Other network analy-
ses, such as analyses of co-morbidities of hip-fractures elderly
patients, provided unexpected results that would be difficult
to obtain otherwise, since patients with more serious comor-
bidities seem to have better follow-up that reduces the risk of
readmission, whereas those with relatively less-serious specific
comorbidities may have less stringent follow-up, leading to
unanticipated incidents that precipitate readmission [154].

Models and Algorithms for Bipartite Graphs

In this section, some general related problems in bipartite
graphs and the problem–solution algorithms are first described.
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Then, some important properties of bipartite graphs that arise
from viewing them as dynamic systems, such as percolation and
controllability, are discussed.

Odd cycle transversal

A graph G = (V, E) and a number k are given. Does there exist
a set of at most k vertices, the removal of which from G would
cause the resulting graph to be bipartite? The problem is NP-
complete [155], i.e., there is no algorithm that can solve it within
a polynomial time with respect to the size of the input, unless
P = NP. The problem is fixed-parameter tractable, i.e., there is
an algorithm, the running time of which can be bounded by a
polynomial function of the size of the graph multiplied by an
exponential function of k [156]. More specifically, the time for
this algorithm is O(3k |E ||V| ) [157]. The name odd cycle transversal
is attributed to the fact that a graph is considered as bipartite if
and only if it has no odd cycles. Hence, deleting vertices from a
graph in order to obtain a bipartite graph, one needs to “hit all
odd cycle” or find a so-called odd cycle transversal set.

Edge bipartization

In a given graph G = (V, E), it is possible to delete at most k edges
so that the graph remains bipartite. This problem is also NP-
complete and fixed-parameter tractable, and it can be solved in
time O(2k |E |2) [158].

Matching

A matching in a graph is a subset of its edges, where no 2 edges
share an endpoint. In many cases, it is simpler to find a spe-
cific matching in bipartite graphs than in arbitrary graphs. A
matching in a bipartite graph is called perfect if for every node
of the graph there is an edge in the matching. Given a matching
M, if M+e is not a match for any edge e, then M is called maxi-
mal matching. A matching consisting of a maximum number of
edges is called maximum matching. While a maximum matching
is maximal, a maximal matching is not necessarily maximum.
A maximal matching can be easily found by a greedy algorithm
in any graph, while a maximum matching in a bipartite graph
can be found in O(

√
(|V|)|E |) time using the Hopcroft-Karp al-

gorithm [159]. In weighted bipartite graphs, a maximum weight
matching can be foundwithin O( |V|2|E |) time using theHungarian
algorithm [160]. While the largest cardinality maximal match-
ing (i.e., a maximum matching) can be found within polynomial
time, a minimum maximal matching cannot be found in polyno-
mial time unless P = NP. However, the number of edges in any
maximal matching is at most twice the number of edges of the
minimummaximalmatching, and therefore theminimummax-
imal matching can be approximated within a factor of 2 in poly-
nomial time. Although a perfect matching can be easily found
in bipartite graphs by finding a maximum matching, counting
the number of different perfect matchings in a bipartite graph
appears to be very difficult. In fact, this problem is #P-complete,
i.e., if there is a polynomial algorithm that solves it, then P = NP
[161].

Stable marriage. The stable marriage problem refers to an inter-
esting problem related to bipartite graphs, which may have ap-
plications in biology. Let M and W be 2 sets of men and women,
respectively, with |M| = |W| = n. Each man m in M has a pref-
erence pm(m, w) for each woman w in W and, conversely, each
woman w in W has a preference pw(w, m) for each man m in M,
so that:

- for all m, w: 1 ≤ pm(m, w) ≤ n
- for all m and any w1 
= w2: pm(m, w1) 
= pm(m, w2)
- for all w, m: 1 ≤ pw(w, m) ≤ n
- for all w and any m1 
= m2: pw(w, m1) 
= pw(w, m2)

In other words, each man (or woman) has a list of distinct
preferences for eachwoman (orman). If pm(m,w)= 1, thenm first
prefersw, while if pm(m,w) = 2, thenw is the second choice ofm,
and so on. The goal of the problem is to find nmarriages between
men and women so that every marriage is stable. A marriage
(m, w) is not stable if and only if there is another married couple
(m’, w’) so that pm(m, w) > pm(m, w’) and pw(w’, m’) > pw(w’, m).
In other words, a marriage (m, w) is not stable if there is another
married couple (m’, w’), where m prefers w’ than his wife and w’
prefers m than her husband.

More formally, in a stable marriage problem, given a com-
plete bipartite graphG(V,U, E), where |V| = |U | = nand each edge
(v, u), where v (resp. u) belongs to V (resp. U), have been assigned
2 values: a value pm(v, u) and a value pw(u, v), defined as above.
The question is whether there is a stable perfect matching in G
that represents n stable marriages (defined as above) between
the sets V, U. Of note, there are n! different perfect matchings in
G. The answer is that there is a fast algorithm [162] that always
returns a stable perfect matching. The algorithm is as follows:

– In the case there is an unmarried woman:
� Each unmarried woman proposes to the man that prefers
that most among those that have not already rejected her,

� Each man selects the woman who prefers the best among
the women that proposed to him and rejects the rest pro-
posals.

It has been proven that the above algorithm always returns
stable marriages for all men and women within a O(n2) number
of proposals, where n is the number of men (or women). A vari-
ant of the problem where the order of preferences is not strict,
i.e., there are men (or women) that equally prefer other women
(or men), has also been studied [163]. For more information re-
garding the problem and its variants, refer to a survey conducted
by Iwama and Miyazaki [164].

Other general problems

Finding the longest path (i.e., finding a simple path of a maxi-
mum length) is NP-complete in bipartite graphs, in contrast to
the shortest path that can be solved in polynomial time on any
arbitrary graph. Moreover, the girth of a graph is defined as the
length of the shortest cycle contained in the graph. Since bipar-
tite graphs may contain only even cycles, the girth of a bipartite
graph is an even number (or 0). Given a bipartite graph G(V, U, E)
of girth g, there is an algorithm for counting the number of cycles
of length g, g+2, g+4, within O(gn3) time, where n = max(|U |, |V|)
[165]. In the k-path partition problem, the task is to partition a
given graphG into theminimumnumber of paths, each ofwhich
has a length at most k. In bipartite graphs, the k-path partition
problem is usually NP-complete while polynomial-time algo-
rithms are known for specific families of bipartite graphs [166].
Furthermore, given a bipartite graph G, a biclique of G is a sub-
graph of G that is also a complete bipartite graph. Finding a
biclique of a maximum number of vertices can be done in poly-
nomial time [167], while finding a biclique of a maximum num-
ber of edges is NP-complete [168]. There is also a large body of
literature on the methods for the optimal drawing of bipartite
graphs [169–175]. An important algorithmic problem that arises
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in this respect is drawing a bipartite graph in a way that mini-
mizes crossing edges [176–178].

Percolation

Recentwork on network theory has addressed the problemof re-
silience of networks by the random or targeted deletion of nodes
or edges. From the perspective of statistical physics, “percolation
is the simplest process showing a continuous phase transition.”
Percolation models on random bipartite graphs offer a simple
illustration of this process. Percolation has been examined on
graphswith a general degree distribution and has given accurate
solutions to various cases, including bond percolation, site per-
colation, and models in which occupation probabilities depend
on the degrees of the vertices [179]. From this point of view, the
failure of a biomedical network could be considered as a perco-
lation process, and the determination of the cutoff number of
failed nodes/edges required to break down the whole network
could be a particularly useful criterion for network failure. [180].
Percolation has been studied mainly in unipartite graphs, but
recently the process has been described also in bipartite graphs
[181]. In the particular model, throughout the percolation pro-
cess, the links between nodeswith degrees k and q are preserved
with a probability proportional to (kq)−α , where α is positive so
edges between hubs have greater probability to fail. The entire
node/edge removal processwas studied by using a theory of gen-
erating functions, and equations for the macroscopic descrip-
tion of the system were deduced.

Link prediction

The problem of link prediction refers to seeking a function of 2
vertices that denotes the similarity or proximity of the vertices.
Link prediction enhances our understanding of the associations
between nodes in bipartite networks. In general, there are sev-
eral algorithms that can be used to extract missing information,
identify spurious interactions, evaluate network-evolvingmech-
anisms, and so on [182]. However, common link prediction func-
tions for general (e.g., unipartite) graphs are defined using paths
of length 2 between 2 nodes. Since in a bipartite graph adjacency
vertices can only be connected by paths of odd lengths, these
functions are not applicable. Instead, a certain class of graph ker-
nels (spectral transformation kernels) can be generalized to bi-
partite graphs, where the positive semidefinite kernel constraint
is relaxed by using the odd component of the underlying spectral
transformation [183]. Other methods have also been developed,
including those based on machine learning [184] and those that
make use of the concept of internal links [185].

Graph ranking

Consider an edge-weighted graph G = (V, E) where each edge of
G has been assigned a positive real number. A set of preferences
or order relationships among nodes of G is also given. This set
is usually represented as a possibly directed weighted graph G’
= (V, E’), where E’ ⊆ E. Each edge of E’ has been assigned a pos-
itive real number with the following interpretation: if (u, v) ∈ E’,
then u must be ranked higher than v, and the penalty for mis-
ordering such a pair is given by the weight of edge (u, v) of G’.
The goal is to rank the nodes of G so as to minimize the rank-
ing error [186]. Ranking is a general problem in graphs of arbi-
trary structure, but the special structure imposed by the bipar-
tite nature triggered the development of specialized algorithms
[187]. Moreover, regularization-based algorithms have appeared,

which find ranking functions thatminimize regularized versions
of the ranking error [188].

k-partite graphs

As mentioned in the beginning of the section Bipartite Graphs,
a bipartite graph is a special case of a k-partite (or multipartite)
graph for k = 2. More formally, a k-partite graph consists of k
nonempty and disjoint sets of nodes U1, . . . , Uk where a node u
∈ Ui can share an edge with a node v ∈ Uj only if i 
= j. In other
words, any edge of the graph can only connect nodes in different
sets (i.e., node sets Ui are independent). Bipartite and tripartite
(i.e., for k = 3) graphs are probably the most studied families of
k-partite graphs. Let us now list some interesting problems re-
lated to k-partite graphs. The problemof recognizingwhether an
arbitrary graph is k-partite is equivalent to the problem of decid-
ing whether the nodes of the graph can be colored using at most
k colors so that each node has been assigned 1 color and any 2
adjacent nodes have been assigned different colors. While rec-
ognizing that a bipartite graph can be easily done in polynomial
time, recognizing a k-partite graph for any k > 2 is NP-complete.
However, recognizing a complete k-partite graph (i.e., a k-partite
graph where any 2 nodes in different node sets share an edge)
can be done within polynomial time for any k. In fact, many
problems that are NP-complete in arbitrary graphs and some-
times even in k-partite graphs can be solved within polynomial
time in complete k-partite graphs, e.g., the maximum clique
problem, themaximum independent set problem, the graph iso-
morphism problem, and the Hamiltonian cycle problem. A nice
recent work on multipartite graphs with devoted sections to the
applications of such graphs in biology can be found in Phillips
[189] and Phillips et al. [190].

Community detection

A network is considered to have community structure, or cluster-
ing, if the nodes of the network can be grouped into (poten-
tially overlapping) sets of nodes in a way that each set of nodes
is densely connected internally, i.e., having many edges joining
nodes of the same cluster and comparatively few edges joining
nodes of different clusters. In the case of nonoverlapping com-
munity detection, the network is divided naturally into groups
of nodes with dense connections internally and sparser con-
nections between groups. There are plenty of methods available
for detecting communities, ranging from traditional clustering
methods (e.g., hierarchical, spectral) to divisive algorithms and
methods that maximize the criterion of modularity [191]. In the
case of bipartite networks, community detection has also re-
ceived considerable attention [192]. It is well understood that
community detection is related to the modularity of a network,
which quantifies the extent to which vertices cluster into com-
munity groups, relatively to a null model network [193]. More-
over, research on the community structure in bipartite graphs
has yielded new metrics for the clustering coefficient [45,194],
and several specialized methods have been proposed for com-
munity detection [195–197] including algorithms for overlapping
communities [198] as well as for quantitative biadjacencymatri-
ces [199]. A conceptually similar condition encountered mainly
in gene expression studies is biclustering (also referred to as
coclustering in the literature). Biclustering consists of simulta-
neous partitioning of the set of samples and the set of their
attributes (usually gene expression) into classes. Samples and
genes classified together are supposed to have a high relevance
to each other. The goal is to find submatrices where the genes
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Figure 6: Numerical examples. (A) A small bipartite network, its adjacency matrix, several calculated topological features for the whole graph, and node ranking
according to degree and betweenness centrality. Information relevant to projected unipartite networks (B and C).

exhibit highly correlated activities for every condition. The vari-
ous biclustering methods for gene expression data are reviewed
by Prelić et al. and Busygin et al. [200,201]. In general, bicluster-
ing methods are thought/presumed to have several advantages
over conventional hierarchical clustering approaches; there are
also considerable performance differences between the 2 meth-
ods. Thus, it would be interesting to test the application of bi-
clustering methods in the task of community detection in bi-
partite graphs.

Controllability

Controllability describes the ability to drive a dynamic system
(e.g., a network) from an initial state to a desired final state in
finite time, with a suitable choice of inputs. The controllability
of general directed andweighted complex networks has recently
been the subject of intense study by several research groups. In-
vestigation of the controllability of complex networks has led to
the identification of the set of driver nodes with time-dependent
control that can guide/drive the system’s entire dynamics. Ap-
plications in several real networks revealed that the number
of driver nodes is determined mainly by the network’s degree
distribution. Sparse heterogeneous networks are the most dif-
ficult to control, but dense and homogeneous networks can be

controlled using only a few driver nodes. Counterintuitively, the
driver nodes tend to avoid the high-degree nodes [202]. Further-
more, an analytical framework to address the controllability of
bipartite networks is based on the dominating se –based ap-
proach, which identifies the topologies that are relatively easy
to control with the minimum number of driver nodes. Such ap-
proaches offer a promising framework to control bipartite net-
works and study their undesired behavior [203].

Examples of Bipartite Network Analysis

In previous sections, we discussed some of the topological fea-
tures of bipartite graphs, and we presented the main categories
of biological bipartite networks. Here, we present some exam-
ples of bipartite network analysis, using both artificial data and
real data.

Detection of patterns using topological features

We used the NAP application [36] in order to give numeric cal-
culations of several of the topological features and metrics de-
scribed earlier. In Figure 6 we visualize a small bipartite graph
with its 2 projected networks and show numeric calculations
about their density, the average path length, the clustering
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Figure 7: Two examples of the way some topological features of the projected unipartite networks are affected by the bipartite graph’s nestedness. (A) Nested bipartite
graph. (B) Fully nested bipartite graph. The higher the nestedness of the bipartite graph, the more connected the projected networks. Maximum nestedness leads to

fully connected unipartite networks (cliques).

coefficient, the modularity betweenness centrality, the close-
ness centrality, and the average connectivity degree. Further-
more, we show an automatically calculated ranking of the nodes
related to their connectivity and betweenness centrality; nodes
with higher rank appear first. In Figure 7, we show how some
of these features of the 2 projected networks change in relation
to the bipartite graph’s topology. For example, in Figure 7A, it
is shown that the more nested a bipartite graph is, the lower
the clustering coefficient is, as it does not tend to form clusters.
Similarly, the higher the nestedness of the bipartite graph, the
higher the betweenness centrality of its projected networks. A
fully nested bipartite graph that generates 2 fully connected net-
works (cliques) is shown in Figure 7B. In addition, we observe
how nestedness affects the betweenness centrality as well as
the centralization degree (hubs). Both are zero since there are
no hubs and no nodes bridging communities. In Figure 8 the ex-
tent to which the modularity of a bipartite graph can affect the
topology of the 2 projections is shown, which also allows us to
infer similarity conclusion.

Analysis of the gene–disease network

Asmentioned earlier, network-based approaches for the discov-
ery of gene–disease associations have enabled biomedical re-
searchers to investigate the genetic complexity of a particular
disease and the relatedness among apparently discrete disease
phenotypes. To illustrate the steps that need to be followed in
the analysis of such a network, we used as a test case the bipar-
tite networks that contained the associations between the hu-
man diseases and the genes that confer susceptibility to these
disease from the study conducted by Kontou et al. [15]. The par-
ticular analysis was performed by combining data from OMIM
and 2 other primary resources containing information of gene–
disease associations, the NIH’s GAD and the NHGRI catalog of
published GWAS. In the original publication, the datasets were
combined, but for purposes of illustration, herewe used only the
GAD dataset in order to avoid confusion.

The original data can be found in Kontou et al. [204], and the
reader can directly upload the biadjacency matrix to a network
analysis tool in order to calculate topological features of bipar-
tite networks and visualize the bipartite structure. For the anal-

ysis, the visual representation, and the projection, we used NAP
[36], igraph [205], and bigraph [206], as well as BiLayout [207] and
PowerClust [208]. For a detailed presentation of the tools, see the
corresponding section. Figure 9A showsnumeric calculations re-
garding the density, diameter, clustering coefficient, modular-
ity, betweenness and closeness centrality, connectance, gener-
ality, and vulnerability of the GAD bipartite network. The mean
number of genes per disease is 14.82, whereas the mean num-
ber of diseases per gene is 1.21. The statistical properties of the
network are captured by the proposed metrics, which reveal a
moderately dense, asymmetric network (few genes, many dis-
eases), with modular architecture and having a moderate de-
gree of betweenness centralization and low closeness central-
ization. These properties dictate further the properties of the
projected unipartite networks. The disease–disease network is
denser, with smaller diameter and a clustering coefficient equal
to 0.44, whereas the gene–gene network is wider, with smaller
density but larger tendency to form clusters (coefficient equal
to 0.75). Betweenness and closeness centralities are compara-
ble for the 2 projected networks. In Figure 9C–G we also present
various visualizations of the bipartite structure as well as of the
projected networks.

Bipartite Graphs, the Biomedical Big-Data Era,
and Some Hints for the Future

Today, we live in the era of big data, where the exponen-
tial growth of information in the biosphere is evident. The
protein and genome landscapes change continuously as new
and hypothetical proteins and genome fragments appear ev-
ery day. Integrated Microbial Genomes (IMG) [11] today includes
approximately 6000 bacterial, 1500 archaeal, approximately
300 eukaryotic, approximately 8000 viral isolate genomes, ap-
proximately 1200 genome fragments, 6500 metagenomes, and
approximately 2000 metatranscriptomes. Based on a very ap-
proximate estimate, this corresponds to approximately 70 mil-
lion proteins coming from the isolate genomes and approx-
imately 4–10 billion proteins coming from the metagenomes
and metatranscriptomes. In addition, the UniProtKB/TrEMBL re-
lease of 15 February 2017 [209] contains approximately 7 750 000
sequence entries. Moreover, Uniparc contains approximately
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Figure 8: Example of the extent to which a bipartite graph’s modularity affects the unipartite projected networks.

150 000 000 protein entries. Protein Family Database (PFAM)
[210], version 31.0, a database of a large collection of protein fam-
ilies that organizes proteins into families by similar domains,
consists of approximately 17 000 entries. Today, NCBI hosts 1 bil-
lion sequences corresponding to 2.2 trillion bases, and RefSeq
alone hosts more than 100 million complete accessions. More-
over, PubMed hosts more than 27 million articles today. Also,
other databases that host results from high-throughput exper-
iments increase in size every day. Thus, comparative genomics
and integrative biology are areas that already have and are ex-
pected to experience a boom in the coming years and to domi-
nate other areas within the broader big-data spectrum (e.g., in-
ternet of things).

Another important attribute of the biomedical bipartite net-
works, which reflect the abstract nature of the entities that they
contain, is that theymake extensive use of data integration tech-
niques and rely on incorporating data from multiple sources
(e.g., diseases, SNPs, gene expression, PPIs, clinical symptoms,
pharmaceutical drugs), contrary to the ecological and molecu-
lar networks. This highlights the need for the creation of pub-
licly available biological databases containing high-quality data.
Biological databases, in general, play a central role in bioin-
formatics, since they offer scientists the opportunity to access
a wide variety of biologically relevant data [211]. Furthermore,
they are indispensable in the context of network medicine and
systems biology and medicine, since the primary data from sev-
eral databases need to be integrated in order to achieve the

desired result [212,213]. Biological databases continue to grow,
and the need for data integration techniques, as well as the
potential applications in network medicine and systems biol-
ogy, also increases [214,215]. Initiatives for standardization and
construction of ontologies is also of paramount importance in
this respect. Currently, available and up-to-date databases ex-
ist for a large variety of data, including SNPs [216], RNAs [217],
PPIs [218,219], biomolecular pathways [220], drugs [221–223], and
diseases [224]. However, the gene–disease relationships, which
form the basis of biomedical networks, are considered especially
problematic since genetic association studies are characterized
by nonreplicability [225,226] and most approaches to collecting
data for gene–disease analysis are based on the clearest gene–
disease associations derived from the literature. In this respect,
OMIM and the GWAS catalog are indispensable resources, but
the recent discontinuation of GAD signifies the need for a more
sophisticated resource that will contain replicated and unbiased
genetic association data.

Today’s high-performance computing capabilities allow for
analysis of massive networks, but scalability, analysis, and vi-
sualization remain a bottleneck [227]. For example, in terms
of visualization, layouting a bi- or n-partite network re-
mains a challenge. While efficient layout algorithms such
as the OpenOrd [228] and Yifan-Hu [229] can be applied on
generic networks, limited efforts have been made to lay out
large-scale n-partite networks, thus rendering the visualiza-
tion of such networks with current methods unattractive.
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Figure 9:A test case of a bipartite gene–disease network from the genetic association database. (A) Topological features of thewhole bipartite network. (B) Data example
of bipartite network (gene–disease). (C) Circular visualization of the bipartite network (genes, red; diseases, blue) using PowerClust. (D) Random visualization of the

bipartite network showing the directed connections between the 2 disjoint sets of nodes using PowerClust. (E) Random visualization of the bipartite network showing
the indirect connections between the 2 disjoint sets of nodes using PowerClust. (F) Topological features of the projected disease–disease network and an example of
themonopartite network and different types of visualization. (G) Topological features of the projected gene–gene network and an example of themonopartite network
and different types of visualization.

Therefore, the need for efficient visualization and layouting
emerges.

In terms of network analysis, clustering is one of the most
active research fields. While a plethora of generic clustering al-
gorithms exist, great efforts have been made in the biomedi-
cal area to incorporate such algorithms within established net-
work visualization tools. For example, Cytoscape’s ClusterMaker
plugin [230] includes attribute cluster algorithms such as Auto-
SOME clustering [231], Eisen’s hierarchical and k-means clus-
tering [232], as well as topology-based clustering algorithms,
such as affinity propagation [233], community clustering (GLay)
[234], MCODE [235], MCL [236], Spectral Clustering of Protein Se-
quences [237], and transitivity clustering [238]. While these ef-
forts have proven to be very fruitful, often usersmisuse these al-
gorithmswithout taking into consideration the topological char-
acteristics of the network. As bipartite graphs come with their
own properties, the implementation of scalable clustering algo-
rithms that take advantage of their topology would be very pow-
erful.

Overall, analysis, layout, and visualization adjusted to bi-
partite and further extended to n-partite graphs are still in
their infancy and constitute a big gap in the biomedical field.
Therefore, we believe that efficient and scalable tools cover-
ing these needs would become protagonists in the field in
the future.

Software and tools for bipartite graphs

In this section, we discuss software applications and libraries
that are available for the analysis and visualization of bipartite
and n-partite networks. While tools for analysis and visualiza-
tion of unipartite biological networks of general use are pre-
sented and analyzed elsewhere [239–242], Table 1 summarizes
their functionalities, and Figure 10 shows how they can be used
for visualizing bi- and n-partite graphs. However, in most cases,
specialized software is needed either in the form of a plugin for
an existing tool or as a completely different package.

Cytoscape [243] is an open-source, bioinformatics-oriented
software platform mainly implemented to analyze and visual-
ize generic interaction networks. Although it does not specialize
in bipartite graphs, some functionality for visualizing and pro-
cessing such graphs is available through several plugins [244].
Nevertheless, it comes with a plethora of simple and more so-
phisticated layout algorithms. Therefore, given a bipartite graph
G = (U, V, E), vertices of the disjoint sets U and V can be selected,
placed separately, and organized by using local simple grid, hier-
archical, or circular layouts. In addition, in order to easily follow
the nodes of each layer, vertices of different groups can be col-
ored accordingly.

DisGeNET [245] is a Cytoscape plugin designed to analyze hu-
man gene–disease association networks. DisGeNET allows users
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Table 1 A summary of the tools dedicated to bipartite graph analysis and their properties

Tool Software Library Usage URL

Cytoscape X Generic network analysis tool http://www.cytoscape.org/
DisGeNET X Cytoscape’s plugin to analyze

disease–gene interactions
http://www.disgenet.org/web/DisGeNET

BiLayout X Bipartite layout http://bilayout.bioinf.mpi-inf.mpg.de
Pajek X Generic analysis and visualization

tool
http://vlado.fmf.uni-lj.si/pub/networks/pajek/

NetworkX X Analysis of several types of graphs
including bipartite graphs

https://networkx.github.io/

UCINET X Social networks; NetDraw is
specialized for bipartite graphs

https://sites.google.com/site/ucinetsoftware/home

Gephi X Generic network analysis tool https://gephi.org/
FALCON X Analysis of ecological networks https://github.com/sjbeckett/FALCON
Arena3D X Visualization of multilayered

graphs
http://arena3d.org/

BicAT X Analysis of networks based on
biclustering techniques

http://www.tik.ee.ethz.ch/sop/bicat/

GeneWeaver X Integration of functional genomics
experiments

https://geneweaver.org/

ONEMODE X Stata module for producing
1-mode projections of a bipartite
network

http://fmwww.bc.edu/repec/bocode/o/onemode.ado

Circos X Data visualization using a circular
layout

http://circos.ca/

Hiveplots X Data visualization using radially
distributed linear axes

http://www.hiveplot.com/

Networksis X Tool to simulate bipartite networks https://cran.r-project.org/web/packages/networksis/index.html
enaR X Provides algorithms for the

analysis of ecological networks
https://cran.r-project.org/web/packages/enaR/

Netpredictor X Prediction of missing links in any
given bipartite network

https://github.com/abhik1368/Shiny NetPredictor

biGRAPH X Extension of the igraph library for
bipartite graphs

https://cran.r-project.org/src/contrib/Archive/biGraph/

BiRewire X Bipartite network rewiring through
N consecutive switching steps

https://bioconductor.org/packages/release/bioc/html/BiRewire.html

DEsubs X Visualization of disease-perturbed
subpathways

http://bioconductor.org/packages/release/bioc/html/DEsubs.html

to access a gene–disease database containing integrated data
from diverse public resources. DisGeNET presents the gene–
disease networks (diseasome) as bipartite graphs and provides
the option to view gene–gene and disease–disease networks de-
rived from the diseasome. Advanced search options permit the
generation of subnetworks and the analysis of sets of diseases
associated through common genes.

BiLayout is a Java plugin that is used to compute a bipartite
network layout for 2 groups of nodes. BiLayout allows some sim-
ple actions, such as selecting 1 of the groups, showing and hid-
ing unconnected nodes, exporting groups of nodes, and reset-
ting the network. Themouse-over effect allows the user-friendly
and customized visualization of all neighbors of a certain node.

Pajek [246] is a free, noncommercial Windows (32-bit) pro-
gram package for analysis and visualization of large networks
(networks containing up to 1 billion vertices and an unlimited
number of edges). Pajek implements several methods for the vi-
sualization of bipartite graphs and for the analysis of the uni-
partite projections of the bipartite graph.

NetworkX [247] is a software package for the generation, pro-
cessing, and analysis of several types of graphs, including bi-
partite graphs. A node attribute named “bipartite” with values 0
or 1 enables the identification of the corresponding set of each
node. The user has to make sure that there are no links between

nodes that belong to the same set. Although NetworkX requires
user intervention for creating bipartite networks, it provides sev-
eral options for bipartite network drawing, projection, and data
analysis.

UCINET [248] is a commercial software package for Windows
designed primarily for the analysis of social network data. It
is accompanied by the NetDraw network tool that can handle
visualization of bipartite networks. However, the tool contains
several options to calculate network metrics that are optimized
for the analysis of unipartite graphs. Nevertheless, UCINET also
contains modules for projecting the bipartite networks.

Gephi [249] is one of the best open-source visualization and
exploration software programs for all kinds of graphs and net-
works. It can easily render networks that consist of up to 100 000
nodes and 1000000 edges.

FALCON [250] is a software package devoted to the analy-
sis of ecological networks and allows user-friendly and efficient
calculations of network metrics, such as nestedness scores, us-
ing state-of-the-art measures and models. The FALCON code is
available in 3 programming languages (R, MATLAB, Octave) and
allows users to install further measures and null models easily.

Arena3D [251,252] is an interactive and freely available
3D generic tool, mainly intended to visualize multilayered
graphs. It uses a layered display to separate different levels of
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Figure 10: Various types of visualizations of n-partite networks. (A) Visualization using a generic network tool such as Cytoscape. Nodes from each group are colored
accordingly. (B) Vertical bipartite visualization. (C) Circular visualization using a Circos-like view often used in genomics. (D) A hive plot view visualizing a tripartite
graph. (E) Visualization of a multilayered network using Arena3D. (F) Visualization of a bipartite network over a world map.

information while emphasizing the connections between them.
Among other functionalities (i.e., great variety of clustering
algorithms), Arena3D can be utilized to visualize intra- and
internetwork connections, show gene expressions levels, and
handle time course data in a phenotypic context. Arena3D’s con-
cept can be easily adjusted to visualize bipartite graphs as ver-
tices of the disjoint sets U and V of a bipartite graph G = (U,
V, E) that can be separated onto different layers and colored
accordingly. Connections across the different layers can easily
be loaded and visualized simultaneously. While nodes can be
placed anywhere manually, clustering across layers can place
the vertices of each layer in a way that crossovers between lines
can beminimized. Although Arena3Dmight be too advanced for
the visualization of simple bipartite graphs, it is highly recom-
mended for n-partite graphs, where n layers can be placed any-
where and in various orientations in 3D space, thereby offering
very sophisticated visualizations. An example is shown in Fig-
ure 10E.

The Biclustering Analysis Toolbox (BicAT) [253] is a software
platform for the analysis of gene interconnection networks, as
well other types of data (e.g., proteomics data), based on biclus-
tering techniques in a single graphical interface. Furthermore,
BicAT offers a variety of facilities (e.g., filtering of biclusters) for
data preparation, review, processing, and post analysis. The user
is able to choose the optimal/their preferred biclustering algo-
rithmamong different algorithms. The programallows the users
to install further extensions or algorithms.

GeneWeaver [254] is an online software package for the inte-
gration of functional genomics experiments. It contains a set of
interactive tools for analysis and visualization of gene sets, gene
set descriptions, and gene set association scores from multiple
species. It differs from conventional gene set overrepresentation

analysis tools in that it allows users to evaluate intersections
among all combinations of a collection of gene sets, including,
but not limited to, annotations to controlled vocabularies. Gene
sets can come from many different sources (e.g., microarray ex-
periments, gene ontology annotations, text mining tools, list of
specific genes).

ONEMODE [255] is a Stata module capable of producing 1-
mode projections of a bipartite network. This package offers
the most complete collection of algorithms for projection, such
as methods for unconditional (global) threshold, methods with
thresholds conditioned on the U-nodes’ degree, methods for
controlling U-nodes’ differing numbers of interacting V-nodes,
the FDSM, and the SDSM.

Circos [256] is a tool widely used in comparative genomics
to visualize structural variations and direct comparisons be-
tween genomes. It uses a circular ideogram layout to facili-
tate the display of relationships between pairs of positions by
the use of ribbons, which encode the position, size, and ori-
entation of related genomic elements. A potential use of Cir-
cos in terms of bipartite network visualization is shown in
Figure 10C.

Hiveplots [257] is a rational method for drawing and visualiz-
ing networks. Nodes are mapped to and positioned on radially
distributed linear axes. While the purpose of the hive plot is to
establish a new baseline for visualization of large networks, we
believe that it is a very suitable tool for visualizing large-scale
n-partite, especially tripartite graphs. An example of the appli-
cation of Hiveplots is shown in Figure 10D.

Other generic visualization tools that could potentially be
adjusted to efficiently visualize bipartite graphs are the 2D
standalone applications such as graphVizdb [258], Ondex [259],
Proviz [260], VizANT [261], GUESS [262], UCINET [263], MAPMAN
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[264], PATIKA [265], Medusa [266], and Osprey [267], as well as 3D
visualization tools such as BioLayout Express [268].

R packages

R is a software environment and a programming language for
statistical analysis supported by the R Foundation for Statistical
Computing. The R language is widely used among researchers
for developing statistical software and data analysis. R is freely
available under the GNU General Public License. R contains sev-
eral packages that can handle bipartite networks. Some of them
are oriented toward the analysis of ecological networks (e.g.,
Networksis, enaR, Bipartite), whereas other tools were designed
for more general network analyses.

Networksis [269] is a package for R built for the analysis of
ecological networks, as well as the generation of seed graphs for
Markov chain Monte Carlo simulations. The tool provides sev-
eral methods and many options to visualize and analyze bipar-
tite networks. It offers the option to calculate a series of indices
summarizing the bipartite network topology. Finally, given that
the ability to simulate graphs with given properties is important
for the analysis of networks, the package can be used to com-
pare results to null models. Networksis uses sequential impor-
tance sampling that has been shown to be particularly effective
in estimating the number of graphs adhering to fixed marginals
and in estimating the null distribution of graph statistics.

enaR [270] is an R package for Ecosystem Network Analysis
(ENA). It is a suite of analytical tools for studying the structure
and dynamics of energy and matter fluxes through distinct eco-
logical compartments.

BipartiteR [271] is an R package containing utilities to visualize
bipartite networks and compute a set of indices that are often
used to describe different aspects of FWs, e.g., pollination webs
or predator–prey webs.

Netpredictor [272] is an R package (available also as an R Shiny
web application) designed for the prediction of missing links in
bipartite networks. The package provides a set of tools for cal-
culatingmissing links in both bipartite and unipartite networks.
Also, Netpredictor allows computation of several bipartite net-
work properties, calculation of significant interactions between
2 sets of nodes using permutation-based testing, and visualiza-
tion of communities for 2 different sets of nodes.

biGRAPH [206] is an R package extension to the well-known
igraph package (which is the method of choice for handling uni-
partite graphs) that provides a set of methods specifically de-
signed for the analysis of bipartite graphs, including the pro-
jection of bipartite graphs handling the problem of information
loss. In addition, clustering and community detection among
vertex subsets is supported by providing metric distance calcu-
lations based on flexible (weighted) neighborhoods. The latest
version of the software package contains some of themetrics for
bipartite graphs proposed by Borgatti and Everett [34], including
measures for density, vertex centrality, and centralization with
respect to each vertex subset.

tnet [273] is an R package that, among others things, can han-
dle the analysis of bipartite networks. Although this tool con-
tains several projectionmethods, it is optimally designed to han-
dle bipartite weighted networks.

BiRewire [274] is an R package in Bioconductor that imple-
ments the switching algorithm for the randomization of bipar-
tite graphs retaining their node degrees (i.e., network rewiring).
BiRewire can be also used for the randomization of general pres-
ence (1)-absence (0) matrices, where the presence distributions
must be preserved. Specifically, BiRewire enables users to gen-

erate bipartite graphs from any “0–1” matrix, as well as rewired
versions of these graphs.

DEsubs [275] is an R package designed to extract differen-
tially expressed, disease-associated subpathways from a path-
way network generated from RNA-seq experiments. It comes
with advanced visualization and enrichment analysis with re-
gard to various biological and pharmacological features. Its cir-
cular representation could be potentially useful for the visual-
ization of bipartite networks.

Dataset collections

Last, we present some repositories (databases) that hold nu-
merous biological network datasets, including bipartite ones.
Even though some of the datasets mentioned earlier are highly
curated and biologically important, here we restrict our atten-
tion to collections of datasets and thus we do not list specific
datasets. Some of these databases contain various datasets,
even of nonbiological origin (such as the Stanford Large Network
Dataset [SLND], Colorado Index of Complex Networks [ICON],
and Koblenz Network Collection [KONECT]), whereas there are
several databases specialized for ecological networks, highlight-
ing the importance of such data in current network research.

SLND accompanies the SNAP library [276], which has been
actively developed since 2004 and is organically growing as a re-
sult of the Leskovec group’s research in analysis of large social
and information networks. The datasets available on the web-
site were mostly collected for the research performed by the
team, and the website has been active since 2009. [277]. ICON
[278] is a comprehensive index of network datasets from all do-
mains of network science, including social, web, biological, eco-
logical, transportation, and technological networks. Each net-
work record is annotated with its graph properties, description,
size, and similar information, and many records include links
to multiple networks. The contents of ICON are curated by vol-
unteer experts from Professor Aaron Clauset’s research group at
the University of Colorado–Boulder. KONECT [279] is a project to
collect large network datasets of all types in order to perform
research in network science, collected by the Institute of Web
Science and Technologies at the University of Koblenz–Landau.
KONECT contains several hundred network datasets of various
types, including directed, undirected, bipartite, weighted, un-
weighted, signed, and rating networks. The networks of KONECT
covermany diverse areas such as social networks, hyperlink net-
works, authorship networks, physical networks, interaction net-
works, and communication networks [280].

The ecological databases include the Web of Life, the Inter-
action Web Database, and the Kelpforest Database. The Web of
Life [281] provides a graphical user interface, based on Google
Maps, for visualization and download of data on ecological
networks regarding species interactions. It is designed and
implemented in a relational database, allowing sophisticated
and user-friendly searches. Data can be downloaded in sev-
eral common formats, and a web-service for data transmission
in JavaScript Object Notation is also provided. The Interaction
Web Database [282] contains datasets on species interactions
from several communities in different parts of the world. Data
currently available cover a variety of interaction types, includ-
ing plant–pollinator, plant–frugivore, plant–herbivore, plant–ant
mutualist, and predator–prey interactions. The developers’ goal
is to expand the database to make it a repository of data on
any kind of interactions. The Kelpforest Database [283] serves as
a repository for the knowledge of identities, life histories, and
interactions between the species present in the near shore kelp
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forest ecosystems of the eastern Pacific Ocean, focusing on cen-
tral and southern California. The information that it contains
could aid in the interpretation of species’ spatial and temporal
patterns and serve as the basis on which to construct and pa-
rameterize mathematical models of these species’ rich commu-
nities [284].

Conclusions

Network-based approaches have been used routinely during
the last decade to analyze the massive amount of biologi-
cal/biomedical data produced from modern high-throughput
experiments. Bipartite networks constitute an important but
usually overlooked and difficult-to-analyze class of networks.
However, given that natively bipartite structures have many ap-
plications in systems biology and medicine, there is an emerg-
ing need for specialized methods and software for analyzing
such networks. Based on a review of the literature, ecologi-
cal networks, which are traditionally constructed by collecting
large samples of individuals from the field, are usually ana-
lyzed as bipartite networks using the native structure. In addi-
tion, research on ecological networks has produced many net-
work metrics designed for bipartite graphs. Several studies have
introduced new indices to describe network properties, and con-
sequently dozens of indices are currently available to address
similar questions [35].

On the other hand, biomedical networks are usually ana-
lyzed through projection and analysis of the projected unipar-
tite networks. This is of no surprise since most of the times
the biomedical networks connect abstract entities, such as “dis-
eases,” “genes,” or “symptoms,” and, in most cases, the primary
goal of the analysis is the direct interactions between members
of the same group. Nevertheless, projection of a bipartite net-
work into its unipartite counterparts results in loss of informa-
tion. Another issue that needs to be investigated is whether and
to what extend the different methods of projection proposed in
the literature affect the overall results of such analysis. Addi-
tionally, it could be particularly useful to determine if any of the
natively bipartite methods or metrics that have been developed
for ecological analysis (e.g., nestedness, modularity, community
detection, flow) can also be applied in the case of molecular or
biomedical networks, such as the diseasome.

Convergence of ecology and bioinformatics is expected in
the near future. Such convergence has been achieved in the
past, with the most prominent applications in phylogenetics,
which is considered a vital part of bioinformatics, in microbial
ecology, and in metagenomics [285], as well as in other areas
of ecology [286]. Of note, in the past decade, molecular meth-
ods (e.g., sequencing, metagenomics, barcoding) were used ex-
tensively in studies of HPWs to clarify species concepts [287].
Therefore, network science constitutes an interdisciplinary field,
where ecologists and molecular biologists are brought together
[288]. We have already noted that indices applied to ecologi-
cal networks could have potential application in the analysis
of biomedical and molecular networks as well. In the opposite
direction, methods for identifying modules in ecological net-
works have stimulatedmuch interest. In addition, several robust
module-detecting algorithms that have been applied in other
disciplines have also been applied in large pollination networks,
showing that these networks weremodular and thatmodularity
co-occurred with nestedness [85]. In a similar manner, the large
arsenal of biclustering methods described in the pertinent ma-
chine learning literature can be applied in the study of ecological
and other biological networks.

Last, it is worth mentioning that, in several cases, at least
in the context of biomedical networks, researchers try to com-
pile tripartite networks in order to model the complex interac-
tions associated with diseases [108,117]. This is of no surprise
since most diseases are multifactorial and affected by various
genetic, environmental, and lifestyle factors. Thus, due to data
accumulation, additional knowledge is expected to be integrated
into gene–disease networks. Taking into account the above in-
formation, future studies, at least those on biomedical networks,
should focus on the development of analytical methods and
software tools capable of handling tripartite and multipartite
graphs that would enable the simultaneous analysis of informa-
tion from multiple sources. For instance, instead of the bipar-
tite gene–disease network, it might be more useful to perform
network data analysis without projections and analyze, e.g., a
multipartite graph that illustrates exposure–gene–symptoms–
disease relationships. A potential way of representing such sys-
tems would be to extend the network into multiple layers (in a
multipartite graph) or to use a generalization of graphs known
as hypergraphs. In a simple graph, a link connects only a pair
of nodes, whereas the edges of the hypergraph (hyperedges) can
connect groups of more than 2 nodes. Toward this end, analyti-
calmethods have been developed in order to extend the applica-
tion of clustering coefficient and subgraph centrality to complex
hypernetworks [34].

Availability of supporting data

The original data for the Analysis of the Gene–Disease Network
can be found in the publications and the supplements of Kontou
et al. [15,204]. The data for generating the example networks of
Figures 1–4 can be found in the Supplementary Material.
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182. Lü L, Zhou T. Link prediction in complex networks: a sur-
vey. Physica A: Statistical Mechanics and Its Applications
2011;390(6):1150–70.

183. Kunegis J, De Luca EW, Albayrak S. The link prediction prob-
lem in bipartite networks. In: Computational Intelligence
for Knowledge-Based Systems Design: 13th International

Conference on Information Processing and Management
of Uncertainty, IPMU 2010; Dortmund, Germany, June 28
- July 2, 2010 Proceedings. Hüllermeier E, Kruse R, Hoff-
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