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ABSTRACT: Functional assay platforms could identify the biophysical properties of cells and
their therapeutic response to drug treatments. Despite their strong ability to assess cellular
pathways, functional assays require large tissue samples, long-term cell culture, and bulk
measurements. Even though such a drawback is still valid, these limitations did not hinder the
interest in these platforms for their capacity to reveal drug susceptibility. Some of the
limitations could be overcome with single-cell functional assays by identifying subpopulations
using small sample volumes. Along this direction, in this article, we developed a high-
throughput plasmonic functional assay platform to identify the growth profile of cells and their
therapeutic profile under therapies using mass and growth rate statistics of individual cells. Our
technology could determine populations’ growth profiles using the growth rate data of multiple
single cells of the same population. Evaluating spectral variations based on the plasmonic
diffraction field intensity images in real time, we could simultaneously monitor the mass change
for the cells within the field of view of a camera with the capacity of > ∼500 cells/h scanning
rate. Our technology could determine the therapeutic profile of cells under cancer drugs within few hours, while the classical
techniques require days to show reduction in viability due to antitumor effects. The platform could reveal the heterogeneity within
the therapeutic profile of populations and determine subpopulations showing resistance to drug therapies. As a proof-of-principle
demonstration, we studied the growth profile of MCF-7 cells and their therapeutic behavior to standard-of-care drugs that have
antitumor effects as shown in the literature, including difluoromethylornithine (DFMO), 5-fluorouracil (5-FU), paclitaxel (PTX),
and doxorubicin (Dox). We successfully demonstrated the resistant behavior of an MCF-7 variant that could survive in the presence
of DFMO. More importantly, we could precisely identify synergic and antagonistic effects of drug combinations based on the order
of use in cancer therapy. Rapidly assessing the therapeutic profile of cancer cells, our plasmonic functional assay platform could be
used to reveal personalized drug therapies for cancer patients.
KEYWORDS: plasmonics, cell growth, functional assays, diffraction field imaging, nanotechnology, nanohole arrays

Thanks to the recent advancements in the treatment
methods, mortality rates for many cancer types

dramatically decreased.1−5 However, some cancer types are
still incurable due to the heterogeneity within the patient
response, which induces a strong drug resistance1,6−9 and
relapse.10−12 Therefore, developing methods to effectively
target these subpopulations is of great importance. Currently,
many treatment methods determine therapeutic profile based
on the presence or absence of genetic or physiological
markers.13 However, there are two important factors that
significantly affect the success of these methods, e.g., (i)
insufficient numbers of validated biomarkers14 and (ii)
inability to assess the response of resistant subpopula-
tions.15−17 Biomarkers are usually developed by the analysis
of bulk omics data, which might fail to represent intratumoral
heterogeneity. Subpopulations and the evolution of subclones
in response to drug treatments within the same tumor might
result in differences in the treatment response and could lead
to drug resistance. Thus, functional assessment of subpopula-
tions’ behavior is essential to estimate the drug response of

heterogeneous tumors.18,19 Furthermore, existing biomarkers
are developed by monitoring large numbers of patients.
However, this methodology complicates the whole treatment
process for relapse that occurs for the patients undergoing a
therapy determined with the use of biomarkers. On the other
hand, sequencing could resolve heterogeneity at the cellular
level, while it still requires validated biomarkers and its
throughput is low.20 In contrast to these methods, functional
assays could reveal drug sensitivity through phenotypic factors
thanks to the direct use of patients’ own cells.16 In this method,
the therapeutic response of cells to drug treatments is
determined with functional biomarkers, which are indicative
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parameters of intra- or extracellular dynamics.21 Direct
measurement and quantification of disease-related parameters
could guide to make accurate decisions for patient care.
However, an in vitro functional assay platform routinely used
in the clinic for the identification of therapeutic profile is not
available yet. Furthermore, the success of functional assays is
limited by various factors, e.g., the need for large tissue
samples, operating based on long-term cell cultures or
population-based bulky measurements, and requiring ex vivo
primary cell proliferation, which is absent in many cases.
Despite these challenges, functional assays have a great
potential in monitoring the therapeutic profile of patients
and assessing the response of subpopulations to specify
personalized cancer therapy.22,23 As opposed to the bulk
measurements targeting population growth, determining
population behavior in single-cell precision over a short time
interval upon an external stimulus could provide more accurate
information related to the active ingredients. In this respect,
accessing single-cell growth could distinguish the cellular
repose of minor groups possessing distinct biochemical or
biophysical properties compared to the population. As one
approach, single-cell growth could be determined based on cell
volume, where 2-dimensional microscopic cell images are used.
Unfortunately, the mathematical assumptions for cell height
could be only applicable to few types of cells, which could even
vary within the same population.24 Quantitative phase
microscopy is another methodology that determines the dry
mass of cells, which could be also used for limited number of
cell types.25 Furthermore, suspended mechanical resonators
could swiftly access single-cell mass with high precision, while
this technique requires cells in suspension.16

In order to address these drawbacks, we recently introduced
a plasmonic functional assay platform determining the distinct
behavior of subpopulations via accessing the growth profile of

single cells.26 Employing a highly sensitive plasmonic chip and
a spectrometer system composed of simultaneously operating
multiple spectrometers, the platform could monitor the uptake
or secretion of molecules in real time, which alters the total cell
mass. Using our platform, we could successfully assess different
intracellular metabolisms that are critical for proliferation. We
also determined the therapeutic profile of cells and
heterogeneity within populations by categorizing them as
sensitive and resistant under certain therapeutic agents.
Despite its highly sensitive nature that could successfully
assess the biophysical properties and therapeutic profiles of
cells, the system throughput of this platform is low since each
sensor location containing an individual cell in the plasmonic
chip needs to be monitored sequentially with the spectrometer
system rather than simultaneously.
Herein, we improved the spectral read-out of such

configuration for a dramatic increase in the system throughput
by replacing the spectrometer system with a CMOS
(complementary metal−oxide−semiconductor) camera. Figure
1A shows the schematics of the high-throughput and
plasmonic functional assay platform. The system employs a
plasmonic chip, where the cells are seeded for growth-profiling
measurements. The plasmonic chip is based on periodic
nanohole arrays fabricated through a 120 nm thick aluminum
film. The aluminum surface was coated with a silicon dioxide
film, which stimulates cell adhesion and eliminates metal
oxidation to maintain plasmonic properties.26 Thickness of this
coating is only 2 nm, i.e., it does not decrease the sensitivity of
the plasmonic chip to the refractive index variations since the
film does not overlap with the perpendicular component of the
surface plasmon (SP) waves.27 In the array, the hole diameter
is 200 nm and the periodicity is 400 nm. Nanohole features
were realized with a high-resolution fabrication technique,
which yields uniformity over a large area (see the Experimental

Figure 1. Components of the plasmonic functional assay platform. (A) Schematic illustration of the plasmonic functional assay platform
determining growth profile of cells to assess their therapeutic response. In the schematics, the square areas on the plasmonic chip highlight the
sensor locations containing individual cells. These sensor locations were drawn as squares in order to clearly explain the concept of our imaging-
based technique. In reality, nanoholes cover the whole plasmonic chip surface, and in the CMOS camera, high-contrast cell images are observed
instead of intensity images in square format. (B) MCF-7 cell adhered on the plasmonic chip surface textured with subwavelength nanohole arrays.
(C) Transmission spectra of the light sources created with the tunable LC bandpass filter with 10 nm bandwidth. (D) Transmission response of the
nanohole arrays under cell medium before (gray curve) and after (blue curve) the attachment of an MCF-7 cell on the metal surface. The light
source used for this scenario to create diffraction field images is highlighted with the red curve. (E) High-contrast diffraction field image of an
MCF-7 cell on the plasmonic chip surface.
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Section for the fabrication of the plasmonic chips). The
structural uniformity supports identical plasmonic properties
across the entire plasmonic chip surface, i.e., cells on the same
chip could be evaluated fairly in the growth-profiling
measurements. In the optical setup, a broadband white LED
(light-emitting diode) light passes through the plasmonic chip
and reaches a tunable liquid crystal (LC) bandpass filter
(Thorlabs Kurios). The transmitted light from the LC filter
reaches the CMOS sensor (Zeiss Axiocam), forming the
plasmonic diffraction field images. An incubator (PeCon)
integrated into an inverted microscope (Zeiss Axio) was used
to maintain CO2, temperature, and humidity levels required for
cell culture. Figure 1B shows the scanning electron microscopy
(SEM) image of an MCF-7 human breast cancer cell on the
plasmonic chip surface (see the Experimental Section for the
preparation of the cell culture). In our technique, cells were
incubated on the surface of the plasmonic chip 24 h prior to

each test in order to eliminate the effect of cell adhesion
phases.26 The silicon dioxide film on top of the plasmonic chip
ensures strong cell adhesion thanks to its porous and rough
surface, eliminating the need for surface modification, e.g., the
cells were simply seeded on the plasmonic chip surface and
incubated for 24 h. Previously, we also showed that cell
migration on the sensing surface after strong cell adhesion
(occurred at cell adhesion phase III) does not alter the spectral
calculations for the individual cell growth profiling.26 Figure
1C shows the spectra of the light sources created with the LC
filter at different wavelengths within the visible range. Here, the
center wavelength could be tuned from 420 nm to 730 nm
with 1 nm incremental step size, while the bandwidth is as
narrow as 10 nm. Previously, we used this imaging method-
ology to reconstruct plasmonic modes, where we could
demonstrate similar refractive index sensitivities with the
classical spectrometer-based read-out schemes.28

Figure 2. Working principle of the plasmonic functional assay platform. (A) Transmission resonances supported by the nanohole arrays in the cell
media, where the sensing surface is seeded with a cell gaining [C1] and losing [C2] mass. (B) Transmission resonances zoomed within the spectral
region highlighted with a black box in (A). For C1, transmission resonance shifts toward longer wavelengths after 2 h (black curve to green curve).
For C2, transmission resonance shifts toward shorter wavelengths after 2 h (orange curve to blue curve). In the figure, spectral behavior of the light
source is highlighted in red. (C, D) Change in the diffraction field intensity (black dots) with time, where growth rate (GR) is calculated by using
the slope of the linear fits for cells C1 (green line) and C2 (blue line). (E) GR vs intensity data for single cells (black dots), presenting the 2-
dimensional growth profile of the population. GR values calculated for C1 and C2 are highlighted with green and blue dots, respectively. (F) Left:
1-dimensional growth profile calculated by normalizing GR of each cell by the intensity value of the same cell. Normalized GR values calculated for
C1 and C2 are highlighted with green and blue dots, respectively. Number of MCF-7 cells used in the growth profile calculations is 50. Right: The
same normalized growth profile calculated from 386 cells. The box plot represents the interquartile range, and the white square is the average value
of GR data. (G) Plasmonic diffraction field image of MCF-7 cells seeded on the plasmonic chip surface. (H) Cell segmentation algorithm, revealing
single cells (white), doubling or aggregating cells (red), and cell debris (blue). (I) SI (spectral integral) values calculated for two spectrometer-
based platforms for two mass-gaining cells. The linear fits to the SI data for 0.09 nm (red line) and 0.15 nm (orange) spectral resolution yield
different R-squared values due to the spectral variances associated with the spectral resolution.
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In the plasmonic chip, the aluminum film was fabricated on
a glass substrate that is coated with a silicon nitride interlayer.
This interlayer between the metal film and the glass layer
eliminates the undesired SP modes excited between metal/
glass interface, which yields a well-defined transmission
resonance.29 The transmission resonance is due to the SP(-
1,0) mode excited at the top aluminum surface, which employs
the unique integration of localized and propagating SPs. This
mode is associated with large local electromagnetic fields,
extending extensively within the adjacent medium which
makes it highly accessible, i.e., it yields high sensitivities to the
refractive index changes.30 The growth-profiling measurements
under the incubator conditions were performed on cells seeded
on the surface of the plasmonic chip immersed in cell media,
ensuring their activity and proliferation. Figure 1D shows the
transmission spectrum of the nanohole arrays under cell
medium (gray curve), where the SP(-1,0) mode is indicated
with an arrow. The transmission resonance shifted by ∼34.65
nm (blue curve) after the attachment of the cell on the chip
sensor (24 h seeding time). LC filter was tuned to a
wavelength ∼16.12 nm longer (red curve) than the trans-
mission resonance for the cell attachment (blue curve). Figure
1E shows the CMOS camera image of an MCF-7 cell on the
plasmonic chip surface. Here, the cell-free chip surface is black
since the transmission resonance under the cell medium does
not spectrally overlap with the LC filter. On the other hand,
the sensor region covered with the cell has high intensity due
to the better overlap between SP(-1,0) mode and the filter
response, which allows a large number of photons reaching the
CMOS imager. Therefore, by precisely positioning the
bandpass filter with a narrow bandwidth, we could create
high contrast between the sensor location and the background
in the plasmonic diffraction field images.

■ MATERIALS AND METHODS
Working Principle of the Plasmonic Functional Assay

Platform. In general, the net biomass of cells increases by
accumulation when the molecular uptake exceeds secretion. On the
other hand, cells lose mass when the secretion is higher. Figure 2A
shows the spectral variations within the transmission resonance based
on these two scenarios, where we evaluated two cells, one of which
gains (C1) and loses (C2) mass for 2 h. Zooming to a smaller spectral
window (Figure 2B), the transmission resonance initially at ∼660.9
nm (black curve) shifted toward longer wavelengths by ∼0.6 nm
(green curve) due to the mass gain for cell C1. On the other hand, the
transmission resonance initially at ∼660.1 nm (orange curve) shifted
toward shorter wavelengths by ∼0.7 nm (blue curve) due to the mass
loss for cell C2. Our fabrication technique ensures an identical
transmission response throughout the plasmonic chip. Therefore, the
difference between the initial position of the transmission resonances
(black curve vs orange curve) is the mass difference between cells C1
and C2.26 The small spectral variations within the transmission
resonance are due to the minute mass accumulation rate, e.g., ∼pg/
h,16,17 which requires a highly sensitive platform that could
differentiate minute refractive index changes. Using our plasmonic
diffraction-imaging technique, we recently demonstrated the detection
of protein molecules with sub-1 ng/mL detection limit.31 Considering
the transmission resonance with a Lorentzian shape and the sub-1 nm
spectral variations within its spectral position in a 2-h-long
measurement, the light source was positioned at 675 nm (red curve
in Figure 2A,B). This methodology ensures that the transmission
maximum always positions at wavelengths shorter than the light
source during the growth-profiling tests, which eliminates the effect of
Lorentzian shape of the transmission resonance on the growth rate
calculations.30

Mass accumulation by a cell on the plasmonic chip surface
increases the effective refractive index, shifting the transmission
resonance toward longer wavelengths. This red shift makes the
transmission resonance overlap better with the light source, i.e., it
allows more photons to reach the CMOS imager, which increases the
diffraction field intensities. In contrast, mass loss decreases the
intensity due to the increase in the spectral mismatch between
transmission resonance and the light source. As we previously showed,
the transmission resonance supported by the nanohole arrays exhibits
a consistent red or blue shift within 2 h, i.e., cellular behaviors could
be evaluated in shorter durations.26 Thus, we monitored these
behaviors with our imaging-based technology over the course of 40
minutes. Figure 2C,D shows the real-time change in the diffraction
field intensity for two different cells. In our technique, diffraction field
intensity represents the cell mass, and the rate of mass change is
analogous to growth rate (GR), which is calculated from the slope of
the linear fit to the intensity vs time data. Here, the positive GR value
(green line) is directly related to mass accumulation over time, while
mass loss yields a negative GR value (blue line). Mapping GR vs
intensity data, we generated a 2-dimensional growth profile for the
population in single-cell resolution (Figure 2E). In this figure,
intensity values on the x-axis are the initial intensity values determined
in the beginning of the tests for each cell (in other words, the mass of
each cell at t = 0). Here, the growth profile data demonstrates the
heterogeneity both in mass and growth rate, e.g., large or small
masses, and positive or negative growth rates. In the same figure, GR
vs intensity data corresponding to the cells C1 and C2 are denoted
with green and blue dots, respectively. Normalizing GR of each cell
with the mass (in other words, intensity) of the same cell, we
determined the 1-dimensional growth profile for the population
(Figure 2F, left). Following this methodology, we could eliminate the
cell cycle- and size-dependent effects, characterizing mass as a proxy
for cell cycle phases.32 Therefore, we used normalized GR values for
growth-profiling calculations throughout the article. In the same
figure, the normalized GR values corresponding to cells C1 and C2
are denoted with green and blue dots, respectively.

In order to have accurate population data, we conducted a cell
segmentation algorithm that could assign single cells, and eliminates
cell debris as well as doubling (or aggregating, clustering) cells from
the calculations. For each population study, we used 50 cells randomly
chosen in the CMOS active area. Prior to the segmentation process,
images were pre-processed with color space change and noise removal
steps. In our imaging-based technique, we used a monochromatic
CMOS camera, i.e., the algorithm is based on monitoring the intensity
variation in grayscale. In order to prevent false detection of cell
boundaries and eliminate unnecessary defects, we smoothed the
image with a Gaussian filter (5 × 5, σ = 1) that suppresses noises. In
the diffraction images, pixels covered with cells have higher intensities
compared to the background, i.e., we could use intensity differences to
extract cells from the background. In the cell extraction algorithm, we
employed an adaptive thresholding method, e.g., Otsu’s method.33 In
this method, images were iteratively thresholded by different intensity
values, and the threshold values resulting in the minimum intraclass
intensity variance were returned. The images were then thresholded
with the returned value, and a binary mask was obtained where the
objects have white color. Potential cells were separated from the
background with white color. In order to detect the white pixel
clusters on the images, we first applied image contouring to determine
boundaries. We could determine the perimeter and the area of each
potential cell pixel-by-pixel from the contours. The values were then
averaged, and the standard deviation values were separately acquired
for perimeter and area values. In order to eliminate doubling or
aggregating (clustering) cells and cell debris from our calculations, it
is critical to determine anomalies in the images. Here, we used a
definition, where we compared each cell candidate. The detected
objects that have smaller areas compared to [average area − standard
deviation] were classified as debris, while the objects that have larger
perimeters compared to [average perimeter + standard deviation] were
classified as doubling cells. The remaining objects were assigned to
the cell class. Figure 2G shows a plasmonic diffraction field image of
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MCF-7 cells adhered on the chip surface. Figure 2H shows the
processed image demonstrating single cells (white), doubling or
aggregating (clustering) cells (red), and debris (blue). Finally, we
averaged the total diffraction field intensity with the number of pixels
in the detected area to determine the mass of each cell.

For a detection scheme based on plasmonic diffraction field images,
spectral resolution is the most critical parameter to detect minute
changes occurring in a short period. As we have shown earlier, the
spectral resolution of our technique is defined by the bandwidth of the
light source, e.g., decreasing the bandwidth strengthens the spectral
resolution.28 For our tunable LC filter, the sharpest light source has a
bandwidth of 10 nm, which yields a spectral resolution above 0.15
nm.28 Spectral resolution determines the variance between each
spectral data associated with the dynamic mass information. Here, we
compared our platform’s ability to access the growth rate of cells with
two spectrometer-based setups with high spectral resolution, e.g., 0.09
and 0.15 nm (see the Experimental Section for the details of the
spectrometer-based measurement setups). In order to determine the
spectral variations due to the minute mass changes, we utilized a
spectral integral method, where we considered the collective
wavelength shifts within the transmission response of the nanohole
arrays (see the Experimental Section for the spectral postprocessing

technique). Figure 2I shows the variations within the spectral integral
(SI) values (analogous to the diffraction field intensity values in the
imaging-based technique) due to two mass-gaining cells. Here, the R-
squared values for the linear fits to the experimental data are
compared for 0.09 nm (red line) and 0.15 nm (orange line) spectral
resolutions. R-squared is the statistical measure, which demonstrates
the accuracy of the fitted regression line, e.g., higher the R-squared,
the better the model fits to the experimental data. R-squared is
between 0 and 1, where R-squared = 1 refers to the perfect fit. As
shown in Figure 2I, the spectrometer-based system with 0.09 nm
resolution yields a higher R-squared value compared to the one with
0.15 nm resolution, which is due to the smaller variations within the
raw data for the higher spectral resolution. In contrast to these highly
sensitive spectrometer-based platforms, our regression line possesses a
relatively lower R-squared value, which is due to the higher variances
observed within the diffraction field images related to the lower
spectral resolution of our plasmonic imaging technique. In order to
compensate this drawback, we increased the test duration from 10
minutes (the duration used for the spectrometer-based configura-
tion26) to 40 min, which increases the duration between each data
point allowing larger shifts (due to larger mass changes) within the
transmission resonance. This ensures distinguishable intensity differ-

Figure 3. Plasmonic platform reveals therapeutic heterogeneity. (A) GR vs intensity data for WT and DR cells under different DFMO exposure
durations (DFMO concentration is 0.6 mM). (B) Normalized GR profile for WT and DR cells for different DFMO exposure duration. (C) Cell
viability under different DFMO exposure durations (DFMO concentration is 0.6 mM), WT/DR: blue/red dots. The arrow highlights the time
when a reduction starts to appear within the viability of WT cells. Squares are the mean values, and the error bars are double the standard deviation
of five independent experiments. (D) GR vs intensity data for WT control cells (blue dots) and WT cells under DFMO exposure (0.6 mM and 6 h)
separated by the orthogonal vector overlay that designates a threshold determined from LDA (dashed line). In (A) and (D), the data
corresponding to control WT cells (orange dots) and WT cells under 0.6 mM and 6 h. DFMO exposure (blue dots) are the shared data. (E) ROC
curves for control and DFMO-treated WT (blue lines) and DR (red lines) cells at different exposure duration (3, 6, 9 h.) The inset in (B) shows
the AUC values calculated from ROC analyses for each exposure duration. (F) Normalized GR profile of WT cells under different DFMO
concentrations from 0.2 to 10 mM (exposure duration is 6 h). The inset in (F) shows the AUC values calculated for different DFMO
concentrations. The arrow indicates the DFMO concentration, where AUC converges to 1. In (B) and (F), the data corresponding to control WT
cells (orange boxes) and WT cells under 0.6 mM and 6 h DFMO exposure (blue boxes) are the shared data. In the normalized GR profiles, boxes
represent the interquartile range, and white squares are the average value of GR data. The number of MCF-7 cells used in the growth profile
calculations is 50.
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ences between each measurement in the presence of a relatively lower
spectral resolution. Even though the test duration increases with the
use of an imaging-based scheme, the system throughput is still
dramatically improved by simultaneously evaluating cells on the
plasmonic chip surface (e.g., for 50 cells, the measurement time is still
40 min). On the other hand, for a spectrometer-based configuration,
test duration is determined by the number of cells used in the growth
rate analyses (e.g., for 50 cells, the measurement time is 50 × 10 =
500 min).

More importantly, employing a CMOS camera for tracking the
plasmonic variations also provides the ability to monitor all cells
within the CMOS camera’s field of view for growth profile
calculations. Under a 20× objective lens, our camera has ∼0.42 ×
∼0.62 mm field of view. Figure 2F (right) shows the 1-dimensional
growth profile of MCF-7 cells determined from n = 386 cells, which
exhibits a similar trend with the one determined from n = 50 cells,
e.g., the mean normalized GR values are 0.0142 (n = 50) vs 0.0144 (n
= 386). In order to compare the growth profile of cells belonging to
the same population with different sample sizes, we used Welch’s t-
test, where significance level α = 5%. Here, α is between 0 and 1, i.e.,
for p > 0.05, two data sets do not show significant differences. Here,
we determined p(50 cells vs 386 cells) = 0.9831, demonstrating their
excellent overlap. Therefore, we used n = 50 cells throughout the
manuscript for data presentation clarity (box plot + data). Our
technique yields a capacity of > ∼500 cells/h scanning rate.
Therefore, combined with a motorized translation stage that allows
imaging different locations of the plasmonic chip surface, thousands of
cells could be evaluated within few h. As our methodology requires
spectral measurements performed under an aqueous environment,
external effects, e.g., water evaporation, do not alter the overall cell
mass.

■ RESULTS AND DISCUSSION
Plasmonic Functional Assay Platform Determines

Heterogeneity in Therapeutic Profile. In order to show
the ability of our functional assay platform to identify
heterogeneity in the therapeutic profile of cancer cells, we
studied the response of MCF-7 cells to difluoromethylorni-
thine (DFMO), which shows antitumor effects on this cell
line.34 Polyamine metabolism is critical for cell growth, which
is regulated by ornithine decarboxylase (ODC), an enzyme
required for polyamine synthesis.35,36 ODC activity is high for
cancer cells, and DFMO is the irreversible inhibitor of ODC.37

Inhibiting ODC activity, in other words, inhibiting the
polyamine synthesis leads to an antigrowth effect, e.g.,
increasing apoptosis or decreasing tumor invasion.34,38 Here,
we studied the effect of DFMO on the growth profile of MCF-
7 cells, and their DFMO-resistant (DR) variants. DR cells were
prepared by gradually treating MCF-7 cells to different DFMO
concentrations (see the Experimental Section for the
preparation of DR cells).39

Figure 3A shows the GR vs intensity data for WT and DR
cells under 0.6 mM DFMO for 3, 6, and 9 h treatment
duration. For each test, the normal cell media were replaced
with the media containing DFMO. Here, treating WT cells
with DFMO for only 3 h significantly reduces GR, and the
reduction in GR is more pronounced for longer DFMO
exposure. On the other hand, DR cells maintain normal growth
and show no significant variations in their growth profile,
which demonstrates their resistant behavior under an
antitumor agent. Similar behavior could be also observed in
the normalized GR profile (Figure 3B), e.g., the antigrowth
effect of DFMO is stronger for longer drug exposure. For
example, the mean normalized GR values for WT cells are
0.1805 (control), 0.1011 (3 h), 0.0131 (6 h), and −0.1165 (9
h), while for DR cells, 0.1826 (control), 0.1841 (3 h), 0.1830

(6 h) and 0.1871 (9 h). In comparison to our plasmonic
functional assay platform, bulk cell viability tests by trypan blue
for WT cells (blue dots in Figure 3C) require 24 h DFMO
exposure for a meaningful reduction in the GR profile. This
result shows that the reduction in GR could reveal the
antitumor effect of DFMO much faster compared to the loss of
cell viability.17 On the other hand, DR cells (red dots in Figure
3C) show negligible variations in viability during the DFMO
exposure. In order to compare the therapeutic profile of cells
under different conditions, we used different statistical
methods. Here, we first performed Welch’s t-test. For the
normalized GR data, we compared different DFMO exposure
duration with the control group, where p-values were
Bonferroni corrected. Increasing exposure duration made GR
more negative, and p-values dramatically decreased, e.g., p(3 h)
= 6.9005 × 10−9, p(6 h) = 3.3225 × 10−28 and p(9 h) = 6.2016
× 10−40. On the other hand, for DR cells, negligible differences
were observed under different DFMO exposure durations due
to their resistant behavior, e.g., p(3 h) = 0.8954, p(6 h) =
0.9708 and p(9 h) = 0.7035.
To show the robustness of our platform for cell classification

based on their therapeutic profile, we performed linear
discriminate analysis (LDA) and receiver-operating character-
istics (ROC) on MCF-7 cells for different exposure duration.
LDA projects the 2-dimensional GR vs intensity data onto a
single axis, which best differentiates the two cell lines, and
defines a classification threshold. Figure 3D shows the growth
profile of WT control cells (orange dots) and WT cells
exposed to 0.6 mM DFMO for 6 h (blue dots), where the LDA
curve (dashed black line) separates the two groups. Following,
we performed ROC analyses and calculated under the curve
(AUC) providing a metric for classifying each cell as sensitive
or resistant to an agent, where AUC = 0.5/1 is a random/
perfect classifier.17,40 Figure 3E shows the ROC curves for WT
(blue lines) and DR (red lines) cells for different DFMO
exposure duration. Figure 3B (inset) shows the AUC values
calculated from the ROC analyses. For different DFMO
exposure duration, AUC for DR cells is ∼0.5 (red dots), e.g.,
DFMO-treated DR cells are indistinguishable from untreated
DR cells. On the other hand, ROC analyses reveal an excellent
resolution between treated and untreated WT cells, e.g., AUC
converges to 1 for longer DFMO exposure (blue dots). These
findings confirmed that our plasmonic functional assay
platform could selectively identify the heterogeneity in the
therapeutic profile of cells for drug treatments.
In addition to the drug exposure duration, we investigated

the discrimination of growth profiles between treated and
untreated cells for a wide range of DFMO concentrations, e.g.,
0.2 to 10 mM under 6 h exposure (Figure 3F). Here, we
observed a larger reduction in GR profile at higher DFMO
concentrations, e.g., the mean normalized GR value for control,
0.1805 dropped to 0.1682 (0.2 mM), 0.1158 (0.4 mM), 0.0131
(0.6 mM), −0.0479 (0.8 mM), −0.1302 (1 mM), −0.3317 (5
mM) and −0.5634 (10 mM). Welch’s t-test performed
between the control and treatment groups also shows the
greater reduction in GR profile with DFMO concentration,
e.g., p(0.2 mM) = 0.3411, p(0.4 mM) = 3.1683 × 10−7, p(0.6
mM) = 3.3225 × 10−28, p(0.8 mM) = 1.7658 × 10−35, p(1
mM) = 6.5804 × 10−48, p(5 mM) = 3.1739 × 10−66 and p(10
mM) = 4.6480 × 10−78. ROC analysis exhibits a similar trend,
i.e., AUC rapidly increases with concentration and converges
to 1 at DFMO = 1 mM (Figure 3F, inset).
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Functional Assay Platform Defines Response to
Single-Drug SOC Therapies. In order to show the ability
of our plasmonic functional assay platform to define response
to standard-of-care (SOC) drugs, we explored the growth
profile of MCF-7 cells under a wide range of SOC single agents
and their combinations. We first evaluated the response of
MCF-7 cells to 5-Fluorouracil (5-FU), which is a cycle-specific
cytotoxic chemotherapeutic agent used in the clinic to treat
cancer. 5-FU has been used in the treatment of breast cancer
since the 1950s.41 Figure 4A shows the normalized GR profile
of WT cells under different 5-FU concentrations, e.g., between
1 and 10 μg/mL (Treatment duration is 6 h). Here, greater
reduction in GR for higher concentrations allows better
discrimination between treated and untreated populations. For
example, the mean normalized GR values were calculated as
0.1843 (control), 0.1796 (DMSO), 0.1779 (1 μg/mL), 0.1455
(2 μg/mL), 0.0918 (4 μg/mL), 0.0325 (6 μg/mL), −0.0460
(8 μg/mL) and −0.1466 (10 μg/mL). Welch’s t-test applied
between control and the treatment groups also exhibits a
similar trend in GR profile, e.g., p(DMSO) = 0.6592, p(1 μg/
mL) = 0.5677, p(2 μg/mL) = 0.0020, p(4 μg/mL) = 9.1031 ×
10−13, p(6 μg/mL) = 6.4107 × 10−23, p(8 μg/mL) = 2.2302 ×
10−36 and p(10 μg/mL) = 4.6297 × 10−49. ROC analysis
(Figure 4B) comparing control and the treatment groups

shows that AUC rapidly increases with concentration and
converges to 1 at 8 μg/mL 5-FU (Figure 4A, inset). As an
additional note, 5-FU was dissolved in dimethyl sulfoxide
(DMSO). Normalized GR data (orange box in Figure 4A)
shows that DMSO does not vary the growth profile of cells.
Here, the corresponding ROC analysis between untreated WT
cells and WT cells under DMSO yields a random classifier, e.g.,
AUC = ∼0.5 (orange line in Figure 4B).
As another SOC agent, we studied the response of MCF-7

cells to Paclitaxel (PTX), which is a chemotherapeutic agent
used in the clinic to treat different cancer types including
breast cancer.42 Figure 4D shows the normalized GR profile of
WT cells under different PTX concentrations, e.g., between 1
and 10 μg/mL (Treatment duration is 6 h). Here, higher
susceptibility of WT cells to PTX therapy with larger
concentrations yields greater reduction in GR, e.g., the mean
normalized GR values were calculated as 0.1885 (control),
0.1934 (DMSO), 0.1672 (1 μg/mL), 0.16 (2 μg/mL), 0.1165
(4 μg/mL), 0.0693 (6 μg/mL), 0.0179 (8 μg/mL) and
−0.0444 (10 μg/mL). A similar behavior could be observed
with Welch’s t-test, e.g., p(DMSO) = 0.6604, p(1 μg/mL) =
0.0448, p(2 μg/mL) = 0.0173, p(4 μg/mL) = 1.9463 × 10−9,
p(6 μg/mL) = 5.3485 × 10−19, p(8 μg/mL) = 6.2697 × 10−29

and p(10 μg/mL) = 1.6188 × 10−38. ROC analysis (Figure 4E)

Figure 4. Plasmonic platform determines the therapeutic profile to single-drug therapies. Normalized GR profile of WT cells under different
concentrations of (A) 5-FU and (D) PTX from 1 to 10 μg/mL (treatment duration, 6 h). Boxes represent the interquartile range, and white
squares are the average value of GR data. Number of MCF-7 cells used in the growth profile calculations is 50. Control/DMSO: orange, 5-FU/
PTX: green/blue. ROC curves for the untreated and treated WT cells for different (B) 5-FU and (E) PTX concentrations. The insets in (A) and
(D) show the AUC values calculated for different drug concentrations. Cell viability under different (C) 5-FU and (F) PTX exposure duration
(drug concentration is 10 μg/mL). The arrows highlight the time when a reduction starts to appear within the viability. For viability tests, squares
are the mean values, and the error bars are double the standard deviation of five independent experiments.
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also shows that the treated cells could be better discriminated
with the control group for higher concentrations, and AUC
converges to 1 at 10 μg/mL PXT (Figure 4D, inset). Similarly,
PTX was diluted with DMSO, e.g., normalized GR and ROC
analysis did not show any variations in the growth profile due
to DMSO.
Viability study also demonstrates the susceptibility of MCF-

7 cells to both 5-FU (Figure 4C) and PTX (Figure 4F)
treatments. As observed in the GR measurements, the
reduction in viability due to 5-FU is greater than PTX. Our
observations in this section demonstrate the capability of our
plasmonic functional assay platform to determine cell response
to two single-drug therapies, where GR profiling precedes loss
of cell viability, e.g., a meaningful drop in the cell viability was
observed at t = 18 h for 5-FU and t = 24 h for PTX.

Functional Assay Platform Determines the Effect of
DFMO on 5-FU and PTX Therapies. 5-FU could be used as
a single agent,43 while its response rates were found much
higher when combined with other drug options.44 As shown in
the literature, DFMO increases the cell’s sensitivity to 5-
FU.45,46 Figure 5A shows the GR profile of WT and DR cells
exposed to 5-FU (8 μg/mL) combined with DFMO (0.6 mM)
for 6 h treatment duration. In all treatment groups, WT cells
exhibit a significant reduction in their GR profile compared to
control. The mean normalized GR value calculated for control
(0.1851) (for DMSO, mean normalized GR = 0.1851) reduced

to 0.0117 for DFMO and −0.0476 for 5-FU. More
importantly, the reduction in GR is more pronounced for
5FU − DFMO combination compared to the single agent
treatments (Figure 5, Scenario [i]), e.g., mean normalized GR
for DFMO + 5-FU is −0.1501. Welch’s t-test also shows a
further reduction in GR profile for drug combination
compared to the single-drug therapies, e.g., p(DMSO) =
0.9244, p(DFMO) = 4.3023 × 10−31, p(5-FU) = 8.4673 ×
10−39 and p(DFMO+5-FU) = 1.2892e-55 × 10−59. In contrast,
no additional reduction in GR was observed following the
addition of DFMO to 5-FU for DR cells due to their resistant
character to DFMO exposure (Figure 5, Scenario [ii]). For
example, the normalized GR values were determined as 0.1842
(control), 0.1894 (DMSO), 0.1832 (DFMO), −0.0452, (5-
FU), and −0.0494 (DFMO+5-FU). Welch’s t-test also
demonstrates that the GR profile of DR cells reduced only
upon treatments containing 5-FU, e.g., p(DMSO) = 0.5759,
p(DFMO) = 0.9179, p(5-FU) = 1.2180 × 10−40 and p(DFMO
+5-FU) = 1.0364 × 10−38.
More interestingly, DFMO triggers an opposite effect on

PTX therapy. Polyamine levels are inhibited in DFMO-treated
cells, which reverses the cytotoxicity of PTX. Therefore,
treatment of WT cells with DFMO, which depletes the
polyamine levels, protects cells from the cytotoxicity caused by
PTX (Figure 5, Scenario [iii]).47 Figure 5B shows the GR
profile of WT and DR cells exposed to PTX (8 μg/mL)

Figure 5. Plasmonic platform determines DFMO’s role in different drug combinations. Schematics illustrates four cases: [i] WT cells are sensitive
to DFMO and 5-FU, i.e., the viability of WT cells decreases with single 5-FU treatment, and the reduction in viability is more pronounced with the
addition of DFMO. [ii] DR cells are resistant to DFMO, and sensitive to 5-FU, i.e., the reduction in viability for 5-FU and DFMO+5-FU is similar.
[iii] WT cells are sensitive to PTX, and DFMO could reverse the cytotoxic effect of PTX, i.e., PTX therapy reduces the viability, while the viability
under DFMO+PTX is higher compared to single PTX therapy. [iv] DR cells are sensitive to PTX, and their DFMO resistance inhibits the reversal
of the protection from PTX’s cytotoxicity, i.e., the reduction in viability for PTX and DFMO+PTX is similar. Normalized GR profiles of WT and
DR cells under 6 h (A) 5-FU (8 μg/mL) and (B) PTX (8 μg/mL) treatments combined with DFMO (0.6 mM). Boxes represent the interquartile
range, and white squares are the average value of GR data. The number of MCF-7 cells used in the growth profile calculations is 50. Control/
DMSO: orange, DFMO: black, 5-FU: green, PTX: blue, DFMO+5-FU: red, DFMO+PTX: magenta.
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combined with DFMO (0.6 mM) for 6 h treatment duration.
Mean normalized GR value calculated for control, e.g., 0.1811
(For DMSO, mean normalized GR = 0.1872) reduced to
0.0090 for DFMO and 0.0161 for PTX. On the other hand,
inhibiting PTX’s cytotoxic effect via DFMO, mean normalized
GR was found greater than those calculated for single-drug
therapies, e.g., 0.1399 (DFMO+PXT). Welch’s t-test also
exhibits DFMO’s reversing effect on PTX’s cytotoxicity, e.g.,
p(DMSO) = 0.4216, p(DFMO) = 1.6231 × 10−31, p(PTX) =
1.6629 × 10−29 and p(DFMO+PTX) = 1.0245 × 10−4. In
contrast, for DR cells, high ODC activity, in other words, high
intracellular polyamine content, results in the reversal of the
protection from PTX’s cytotoxic effects (Figure 5, Scenario
[iv]).47 For DR cells, mean normalized GR values are similar
for control and DFMO, e.g., 0.1804 (control), 0.1872
(DMSO), and 0.1891 (DFMO). Due to the sensitivity to
PTX therapy, normalized GR dropped to 0.0195. On the other
hand, DFMO’s protection from PTX is not valid due to the
resistance to the depletion of polyamine levels, i.e., the
normalized GR value for DFMO+PTX is similar (0.0183) to
PTX. Welch’s t-test also shows a similar trend, e.g., p-values
were calculated as p(DMSO) = 0.3890, p(DFMO) = 0.3390,
p(PTX) = 1.0233 × 10−33 and p(DFMO+PTX) = 2.0433 ×
10−30. These results show that our technique could precisely

identify how the effect of a drug molecule is altered in
combination drug therapies.

Plasmonic Platform Reveals Response to Combina-
tion Therapy. In order to validate the ability of our platform
to define therapeutic response to combinations of SOC agents,
we explored the growth profile of MCF-7 cells under a wide
range of drug combinations. In addition to 5-FU and PTX, we
studied a chemotherapy drug, e.g., doxorubicin (Dox) that
could slow or stop cancer cell growth by blocking topoisomer-
ase II enzyme and by the generation of free radicals.48 Figure
6A,B shows the normalized GR profile for different
combinations of 5-FU, PTX, and Dox (box plots), and the
mean of each data set (dots), respectively. Figure 6C shows the
viability study associated with the therapies of the same drug
combinations. We first investigated the synergistic effect of 5-
FU (8 μg/mL) and PTX (8 μg/mL) for 6 h treatment
duration. As shown in the literature, simultaneous exposure of
the two drugs or 5-FU pretreatment could reduce cell death
compared to single PTX therapy (Figure 6, Scenario [i] vs
[ii]).49 For instance, the mean normalized GR calculated for
DMSO (orange dot: 0.1897) decreases more for PTX (blue
dot: 0.0132) compared to PTX − 5-FU combination (magenta
dot: 0.0735). Welch’s t-test, comparing cells under DMSO and
the drug-treated cells, also exhibits the reduction in PTX’s

Figure 6. Plasmonic platform defines response to drug combinations. Schematics illustrates five cases: WT cells are sensitive to PTX and
simultaneous exposure to PTX and 5-FU decreases PTX efficiency, i.e., [i] reduction in viability for PTX is higher compared to [ii] PTX+5-FU.
WT cells are sensitive to Dox, e.g., viability reduces with single Dox therapy. Pretreatment with Dox increases the activity of PTX, i.e., [iii]
reduction in viability for Dox → PTX sequence is much higher compared to [i] single PTX therapy. WT cells are sensitive to 5-FU and Dox →
PTX sequence before 5-FU treatment (a washout step applied before 5-FU) increases 5-FU’s efficiency, i.e., [v] reduction in viability for Dox →
PTX → 5-FU is much higher compared to [iv] single 5-FU therapy. (A) Normalized GR profile, (B) mean normalized GR values, and (C) viability
of WT cells under DMSO (orange), PTX (blue), 5-FU (green), Dox (red), PTX+5-FU (magenta), Dox → PTX sequence (violet), and Dox →
PTX → 5-FU sequence (black). In the normalized GR profiles, boxes represent the interquartile range and white squares are the average value of
GR data. The number of MCF-7 cells used in the growth profile calculations is 50. For viability tests, squares are the mean values and the error bars
are double the standard deviation of five independent experiments.
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efficiency when combined with 5-FU, e.g., p(PTX) = 1.5507 ×
10−28 and p(PTX+5FU) = 1.3124 × 10−18. Viability study,
where MCF-7 cells were exposed to single PTX therapy and
PTX − 5-FU combination for 48 h, reveals similar trends in
the therapeutic profiles, e.g., PTX’s antigrowth effect decreases
in combination drug therapy (orange/blue/magenta bars:
DMSO/PTX/PTX+5-FU).
More importantly, as shown in the literature, a short Dox

pretreatment could enhance the activity of PTX (Figure 6,
Scenario [i] vs [iii]).50 For instance, treating MCF-7 cells with
1 μg/mL Dox for 2 h decreases the mean normalized GR to
0.0562 (red dot). After Dox exposure, the medium with drug
was removed, and the cells were treated with PTX for 6 h. The
mean normalized GR calculated for PTX (blue dot: 0.0112)
dramatically decreases to negative values for the Dox → PTX
sequence (violet dot: −0.1447). Welch’s t-test also shows this
strong reduction in GR profile due to Dox pretreatment, e.g.,
p(PTX) = 1.1619 × 10−29, p(Dox) = 2.9741 × 10−22 and
p(Dox → PTX) = 1.2914 × 10−47. Viability study for 48 h of
single-drug therapies demonstrates the antitumor effect of PTX
(blue bar) and Dox (red bar). 48 h PTX exposure following
pretreatment with Dox for 6 h (violet bar) reduces viability
much stronger compared to 48 h single PTX therapy (blue
bar).
As shown in the literature, Dox → PTX pretreatment

reduces basal thymidylate synthase expression, which increases
5-FU activity (Figure 6, Scenario [iv] vs Scenario [v]).51 After
Dox → PTX sequence (2 h Dox and 6 h PTX pretreatment),
the medium was replaced with a drug-free medium, where
MCF-7 cells were cultured for 12 h. Later, the drug-free
medium was replaced with 5-FU medium, where the treatment
duration was 6 h. The mean normalized GR values for 5-FU
and Dox → PTX sequence were calculated as −0.0471 (green
dot) and −0.1407 (violet dot), respectively (for DMSO,
0.1897). The reduction in GR profile was dramatically
pronounced due to the synergistic effect between 5-FU and
Dox → PTX sequence, i.e., the mean normalized GR was
calculated as −0.3687 (black dot). Welch’s t-test, comparing
cells under DMSO with the drug-treated cells, also exhibits the
synergistic effect of the three-drug combination, e.g., p(5-FU)
= 3.7502 × 10−39, p(Dox → PTX) = 1.0884 × 10−51, and
p(Dox → PTX → 5-FU) = 2.3505 × 10−71. Viability study also
demonstrates the strengthening effect of Dox → PTX sequence
on the activity of 5-FU treatment. Here, cells were treated with
Dox for 6 h prior to PTX treatment for 48 h. Then, cells were
treated with 5-FU for 48 h following a resting period of 48 h in
a drug-free medium. The data also demonstrates that for 5-FU
treatment after Dox → PTX sequence (black bar), the
reduction in viability is pronounced dramatically compared
to 5-FU (green bar) and Dox → PTX sequence (violet bar).
These results confirm our technology’s ability to identify the
response of cancer cells to drug combinations as well as
determine additive and antagonistic effects between drugs in
combined therapies.

Future Perspective. Our data revealing the effect of
single-drug therapies, and synergic or antagonistic effect of
drug combinations demonstrate the potential of our plasmonic
functional assay platform to determine personalized drug
therapies for cancer patients. One option from many
therapeutic selections is used in the clinical decision based
on multiple parameters related to patients. Here, our
plasmonic functional assay platform could help physicians to
precisely determine the therapeutic strategy by adding a critical

parameter. Using patients’ own cells that could be obtained by
biopsy, and evaluating their response to a variety of available
antitumor agents, our plasmonic platform could be used for
both induction therapy and post-relapse treatment. Based on
the diagnosis, patients undergo induction therapy, where our
platform could increase the success of finding the therapeutic
agents from many options that leads to complete response. In
general, induction therapy is followed by consolidation therapy
to kill cancer cells that may be left in the body after the cancer
disappears. Maintenance therapy is then followed to keep
cancer from relapse. However, there is still a high potential for
relapse. In the presence of relapse, clinical decision is made
based on the prior therapies received and the physician’s
clinical experience. In this particular case, our technology could
help physicians to determine the optimum drug therapy from
the remaining treatment options.

■ CONCLUSIONS
In conclusion, we introduced a high-throughput and sensitive
plasmonic functional assay platform to identify the therapeutic
profile of cancer cells in single-cell precision. Our platform
could determine the growth profile of populations by assessing
the mass and mass accumulation rate of individual cells. Using
this ability, the technology could identify the biophysical
properties of cells, and determine the therapeutic effects of
cancer drugs by monitoring the variations within these
properties through ex vivo measurements. Using our platform,
we could monitor cells with a scanning rate of > ∼500 cells/h
to determine the growth profile of populations. Thus, our
technique brings a new modality to assess the therapeutic
profile of cancer cells much faster compared to cell culture-
based classical methods. We could determine the therapeutic
profile of cancer cells by using the changes observed within
their growth profile under certain drugs or their combinations.
The platform could identify the resistant behavior of
subpopulations to different drug treatments, revealing their
therapeutic heterogeneity, which is a critical advantage over
bulk analyses as we could provide therapeutic profiles in single-
cell precision. For a proof-of-principle demonstration of our
technology, we used MCF-7 cells and studied the therapeutic
effects of standard-of-care (SOC) drugs, e.g., difluoromethy-
lornithine (DFMO), 5-fluorouracil (5-FU), paclitaxel (PTX),
and doxorubicin (Dox). Using our platform, we successfully
demonstrated the antitumor effects of therapies utilizing single
SOC agents or their combinations. We also investigated the
effect of drug order in the combination therapies on the overall
antitumor effect. Providing accurate information related to
drug susceptibility, functional assay platforms could be strong
candidates for clinical applications, while they are limited by
bulk measurement approaches and long-term cell cultures.
Eliminating these requirements by precisely providing
therapeutic information with small sample volumes, our
single-cell plasmonic functional assay platform could transform
approaches relying on functional assays to a technology
identifying personalized drug therapies.

■ EXPERIMENTAL SECTION
Fabrication of the Plasmonic Chips. All fabrication steps were

performed on a 100 nm LPCVD silicon nitrite coated 4-in wafer
(LPCVD = low-pressure chemical vapor deposition). The silicon
nitride surface was coated with a 120 nm thick aluminum film, while 5
nm thick titanium film was used as an adhesion layer. The aluminum
surface was coated with a photoresist, and deep ultraviolet lithography
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was performed to define apertures throughout the resist. Following
the development of the photoresist, the aluminum film was etched
with ion milling, realizing periodic nanohole arrays. The remaining
photoresist was removed from the metal surface with oxygen plasma,
and the aluminum surface was coated with 2 nm silicon dioxide.
Finally, the wafer was diced to realize plasmonic chips with the
desired dimensions. This fabrication technique ensures high-quality
periodic apertures that are uniformly distributed over large areas.

Preparation of the Cell Culture. For growth rate measurements,
we used MCF-7 cells (ATCC HTB-22). The cells were maintained in
RPMI 1640 medium supplemented with 10% FBS, 10% penicillin,
and 1% nonessential amino acids in a humidified Thermo Scientific
Forma 371 incubator at 37 °C and 5% CO2.

Spectrometer-Based Functional Assay Platform. In the
spectral measurements, we used a microscope (Zeiss Axio), where
we fiber-coupled a multichannel spectrometer system using
achromatic and objective lenses, and a fiber collimator. Plasmonic
chips were illuminated with a broadband white LED source, and the
transmitted light from the chips was collected with an objective lens.
For spectral measurements, we used two multichannel spectrometer
systems, where the visible frequency range was divided with five and
three simultaneously performing spectrometers with 5 μm slit width.
Dividing the spectral range of interest with multiple spectrometers, we
could achieve better spectral resolution, e.g., the spectrometer system
of five spectrometers (Avantes B.V. with multifurcated fiber cable) has
a spectral resolution of 0.09 nm, while the one with three
spectrometers (Ocean Insight with trifurcated fiber cable) has 0.15
nm spectral resolution.26 Considering the minute mass changes in
sub-1 pg/hr level, which yields small variations within the trans-
mission response of the nanohole arrays, optical setups were located
on a vibration isolator. In the light-coupling scheme, we utilized a
motorized translation stage to precisely couple the transmitted light
from the plasmonic chip to the spectrometer systems. The microscope
stage was encapsulated with a PeCon cell culture incubator, and the
incubator parameters were maintained with a Zeiss incubation control
platform at 5% CO2, 37.0 °C, and 95% humidity.

Spectral Postprocessing Technique. The raw spectrometer
data was smoothed with a Savitzky−Golay filter. The biomass
variations on the plasmonic chip surface for a 10-minute-long growth
rate measurement are small, e.g., ∼pg/hr level. These mass variations
create small refractive index changes, which result in spectral shifts
below 1 nm.26 Therefore, monitoring spectral shifts within the
plasmonic resonances (e.g., transmission maxima in our case) could
be insufficient to determine the rate of mass change. To address this
problem, we utilized a postprocessing technique that could consider
the collective spectral variations within the plasmonic resonances.
Recently, we used such a technique to detect protein concentrations
in sub-1 ng/mL level,29,31 and to determine the growth profile of
populations in single-cell precision.26 To consider the collective
spectral shifts, we calculated the integral of the transmission curve
within a 60 nm wide spectral window, positioned to close proximity of
the transmission resonance, where the largest spectral shifts occur as a
result of strong light-matter interactions. Considering the trans-
mission resonance with a Lorentzian shape, we positioned the spectral
window ensuring that the transmission maximum always positions at
wavelengths shorter than the spectral window during the growth-
profiling tests. This methodology eliminates the effect of Lorentzian
shape of the transmission resonance on the growth rate calculations.30

Accumulated mass (mass loss) on the sensor surface shifts the
transmission resonance toward longer (shorter) wavelengths, i.e., it
overlaps better (worse) with the spectral window, which increases
(decreases) the SI value. For example, Figure 2I demonstrates the
consistent increase in SI due to the accumulated cellular mass.

Preparation of DR Cells. Wild-type MCF-7 cells were exposed to
different DFMO concentrations, e.g., in the order of 0.1, 0.2, 0.4, 0.6,
and 0.8 mM for 4 weeks (total 20 weeks). At the end of each
concentration treatment, growth profiles of treated DR cells were
compared to those of untreated WT cells. The similar growth profile
between the treated DR cells and the untreated WT cells for each
concentration reveals the resistant nature of DR cells to such DFMO

concentration. DR cells prepared with this protocol could adapt to
DFMO concentrations up to 0.8 mM.
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