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ABSTRACT  

Melanocytic lesions may occur in various areas of the skin and may eventually develop into malignant tissue types as a 

result of abnormal tissue growth. Although the gold standard for the diagnosis of melanoma is still a histopathological 

examination, dermatologists often use dermoscopic examination in their routine practice to reduce unnecessary excisions 

or to prevent misdiagnosis of clinically suspected melanocytic lesions. However, dermoscopic examinations may require 

special training and experience. Furthermore, even among experts, different evaluation results may occur. For these 

reasons, image processing and artificial intelligence application studies are performed on dermoscopic images based on 

information technologies developed in recent years. This study investigated the automatic classification of superficial 
spreading melanoma and nevocellular nevus using support vector machines. A publicly available and histopathologically 

verified MED-NODE data set (70 superficial spreading melanomas and 100 nevocellular naevi) was used. For the 

classification task, first, the energy distributions (power spectral densities) of each image in the spectral domain were 

obtained. Second, gray-level co-occurrence matrices were created, and the textural features of the matrices were 

extracted. Finally, the learning model was developed with these features as input for classification. Support vector 

machines were trained using validation methods, including holdout validation and stratified cross-validation. The 

hyperparameters were optimized using the regularization factor of 10, the radial basis kernel function, and the gamma 

factor of 0.0098. Using 10-fold cross-validation, we achieved a mean accuracy of 98.9% (+/- 0.01 standard deviation), 

99.4% sensitivity, and 97.5% specificity.  

Keywords: Melanocytic skin, superficial spreading melanoma, nevocellular nevus, support vector machines, machine 
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1. INTRODUCTION 

The skin is the largest organ in the human body and has many tasks, such as protecting the body from injuries, 

microorganisms, harmful ultraviolet rays, as well as regulating body temperature, allowing heat and cold sensation. 

Melanocytic lesions that occur in various regions of the skin, which may undergo change and development over time, 

have the potential to develop into malignant tissue types as a result of abnormal tissue growth [1]. Although the gold 

standard for the diagnosis of melanoma is still histopathologic examination [1], dermatologists often use dermoscopy 
devices in their routine practice to reduce unnecessary excisions or to clinically avoid possible melanoma in lesions [2]. 

For example, in clinical practice and studies, a risk factor occurs on skin moles based on ABCDE criteria (A: 

Asymmetry, B: Border irregularity, C: Color, D: Diameter, E: Evolving), 3-point check-list [3], and 7-point check-list. 

To examine such a risk factor, it is essential to consider that dermoscopic examinations require specialized training and 

experience, because, in some critical cases, incorrect or inadequate results may occur. Image processing [2] and 

customized artificial intelligence application [2] development studies on dermoscopic images have recently attracted 

interest. However, the generalization of the algorithmic processes, including outer edge segmentation, has been 

challenging [2]. 
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Besides, although deep learning-based convolutional neural network architectures can be performed by convolutional 

filtering-based feature extraction of the skin lesion, large dataset size are required for the development of the artificial 

neural network [4]. 

The objective of this study is to investigate the technical performance of the optimized support vector machines on 

reducing computation time, algorithm complexity, and number of required data set. In this study, the tissue model was 

superficial spreading melanoma and nevocellular nevus. Validation methods, including holdout and 10-fold stratified 
cross-validation, were utilized in the training of the support vector machines [5]. 

2. MATERIALS AND METHODS 

In this study, an open-access database, MED-NODE [6], was used to train and test our model, including 

histopathologically verified images of superficial spreading melanoma (SSM) and nevocellular nevus (NN), 

respectively. The data set comprised a total of 170 images, including 70 SSM and 100 NN. A non-dermoscopic camera 

acquired images (Nikon D3 with a Nikkor 2.8/105 mm micro-lens). The distance between the micro-lens and the lesion 

was 33 cm, as described in Ref. [6]. The model was developed on HP Z4 workstation with W-2145 Intel Xeon 
processor. 

Figure 1 demonstrates a flowchart of the study. Feature extraction from images was performed in two main steps to 

obtain a binary classification between melanoma and nevus: First, the power spectral density (PSD) (i.e., the squared 

magnitude of the two-dimensional Fourier transform) of each image was estimated to analyze the pixel-based energy 

distribution in the spectral domain. Second, a 2D gray-level co-occurrence matrix (GLCM) of calculated power spectral 

densities was determined to establish a relationship between patterns of neighboring pixels in an image at a distance. 

Figures 2 and 3 show representative images and corresponding power spectral density calculations for superficial 

spreading melanoma and nevocellular nevus melanoma, respectively. 

 

 

Figure 1. A flowchart of the classification model used in the study. 
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Figure 2. Top row: Superficial spreading melanoma image samples. Bottom row: Corresponding power spectral density 
calculations of the images. 

 

 

Figure 3. Top row: Nevocellular nevus melanoma image samples. Bottom row: Corresponding power spectral density 
calculations of the images. 
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As shown in Figure 4, 2D spectral image-based pattern analysis included both the homogeneous and heterogeneous 

propagation effects of the lesion, the neovascularization effect [7], arborizing vessel effect [8,10], color tone distribution, 

and lesion outer (border) irregularity. From a PSD image, the GLCM matrix [9] was determined by evaluating the 

distances (1, 2, 3, 4) between the reference pixel and neighboring pixels at 0, 45, 90, and 135 degrees for each distance. 

In the GLCM matrix, 14 different features were extracted for each distance, so that obtaining a 4x14 feature group for 

four degrees of orientation. These features included angular second moment, contrast, correlation, variance, inverse 
difference moment, sum average, sum variance, sum entropy, entropy, difference variance, difference entropy, 

information measures of correlation, and maximal correlation coefficient [9]. During the training, two different types of 

cross-validation methods, (i.e., stratified method and hold-out method) applied, and the hyperparameters, including 

regularization factor (C = 10), radial basis kernel function (RBF) and gamma factor (gamma = 0.0098) were optimized. 

 

 

Figure 4. A representative gray-level co-occurrence matrix (GLCM) calculation for distance of 1 at 0. 

 

The following equations were used to extract the features of each grayscale spatial-dependence matrix [8]. As a notation, 

p(i,j) is a normalized GLCM, shown in Figure 4. px(i) was the value of ith coordinate in the probability matrix 

(normalized GLCM), and calculated by summation of the row of p(i,j). py(j) was the value of jth coordinate in the 

probability matrix (normalized GLCM), and calculated by summation of the column of p(i,j). N was the distinct number 

of gray tone values. 
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3. RESULTS 

For the binary classification of skin tumors, we used two different classifiers, the support vector machines classifier and 

the random forest classifier [11]. Figure 5 shows the receiver operating characteristic (ROC) performance of the support 

vector machines classifier. In the 10-fold cross-correlation analysis, the 2
nd

 fold provided the largest area under the 

curve, as shown in Figure 6.  

 

 

Figure 5. Receiver operating characteristic (ROC) performance of the support vector machines classifier. 

 

 

Figure 6. 10-fold stratified cross-validation results for support vector machines classifier. 
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Figure 5. Receiver operating characteristic (ROC) performance of the random forest classifier. 

 

Figure 7 shows the receiver operating characteristic (ROC) of the random forest classifier. In the 10-fold cross-

correlation analysis, the 9th fold provided the largest area under the curve. 

Table 1 summarize the calculated results including mean accuracy, mean sensitivity, and mean specificity for both 

classifiers. 

 

Table 1. A performance summary of the support vector machines classifier and the random forest classifier. 

Classifiers  meanAccuracy meanSensitivity meanSpecificity 

Support vector machines 98.9% 99.4% 97.5% 

Random forest classifier 94.9% 94.4% 95.4% 

 

4. DISCUSSION AND CONCLUSIONS 

Melanocytic lesions may occur in various areas of the skin and may change over time. They also have the potential to 

develop into malignant tissue types as a result of abnormal tissue growth. Dermatologists often use dermoscopic 

examinations in their routine practice to reduce unnecessary excisions or to prevent misdiagnosis of clinically suspected 

melanocytic lesions. However, dermoscopic examinations are considerably dependent on specific training and 

experience. For this reason, different evaluation results may arise among experts in some cases. 

This study investigated the automatic classification of superficial spreading melanoma and nevocellular nevus using 

support vector machines. Support vector machines were trained using validation methods including holdout and 10-fold 

stratified cross-validation.  Selecting a small value of the regulation factor would result in a large margin or vice versa. 

So, defining a hyperplane with optimum margin was strongly related to the regularization factor and gamma factor that 

used in radial basis kernel function. As the gamma in gaussian radial basis kernel function increased, hyperplane or 

decision boundary would be more wiggling, which might result in overfitting. Therefore, we chose to use the radial basis 

kernel function because of nonlinear property entries. 
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Overall, the hyperparameters were optimized using the regularization factor of 10, the radial basis kernel function and 

the gamma factor of 0.0098. 98.9% mean accuracy, 99.4% sensitivity and 97.5% specificity were obtained. 
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