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ABSTRACT
The rapid development of next-generation sequencing technologies and genomic
data sharing initiatives during the post-Human Genome Project-era has catalyzed
major advances in individualized medicine research. Genome-wide association
studies (GWAS) have become a cornerstone of efforts towards understanding the
genetic basis of complex diseases, leading to the development of polygenic scores
(PGS). Despite their immense potential, the scarcity of standardized PGS
development pipelines limits widespread adoption of PGS. Herein, we introduce
PGSXplorer, a comprehensive Nextflow DSL2 pipeline that enables quality control of
genomic data and automates the phasing, imputation, and construction of PGS
models using reference GWAS data. PGSXplorer integrates various PGS
development tools such as PLINK, PRSice-2, LD-Pred2, Lassosum2, MegaPRS,
SBayesR-C, PRS-CSx and MUSSEL, improving the generalizability of PGS through
multi-origin data integration. Tested with synthetic datasets, our fully
Docker-encapsulated tool has demonstrated scalability and effectiveness for both
single- and multi-population analyses. Continuously updated as an open-source tool,
PGSXplorer is freely available with user tutorials at https://github.com/tutkuyaras/
PGSXplorer, making it a valuable resource for advancing precision medicine in
genetic research.
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INTRODUCTION
In the post-Human Genome Project era, genomic data has become a cornerstone of
personalized medicine and health research. The availability of technologies capable of
generating vast genomic datasets has accelerated advancements in genome-wide
association studies (GWAS) and other genomic analyses, providing insights into the
genetic basis of complex diseases (Kim et al., 2012; Shi & Wu, 2017). The National
Institutes of Health’s Genomic Data Sharing Policy has facilitated the dissemination of
these datasets, improved collaboration and supported precision medicine initiatives (Shi &
Wu, 2017). Central to this progress is genomic data quality control (QC), which relies on
filtering and preprocessing genetic data to meet the stringent demands of high-throughput
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analyses and aims to ensure the accuracy and reliability of findings (Chang et al., 2015;
Gondro, Porto-Neto & Lee, 2014).

One of the most significant advances arising from the GWAS approach is the creation of
polygenic scores (also known as polygenic risk scores, PRS or PGS), which estimate an
individual’s genetic predisposition to traits or diseases by aggregating the effects of
multiple genetic variants. Calculated from genome-wide genotypes and their weights,
which are determined by effect sizes from GWAS, PGS provide a single-value estimate of
genetic propensity. These scores have shown great promise in predicting the risk of
complex diseases like Alzheimer’s (Mantyh et al., 2023), Parkinson’s (Wen et al., 2023),
cardiovascular diseases (e.g., coronary artery disease, atrial fibrillation) (Elliott et al., 2020;
Kavousi & Ellinor, 2023), prostate cancer (Schaffer et al., 2023) among others. By
improving predictive accuracy compared to earlier genetic tools, PGS support
individualized medicine by offering clinicians insights that can guide interventions.

Recent advances in PGS computation have highlighted both challenges and
opportunities in integrating diverse populations into genetic research. A major limitation
in the field stems from the overrepresentation of individuals of European ancestry in
GWAS datasets, which reduces the transferability and clinical utility of PGS for
non-European populations (Fahed et al., 2020). To address these disparities, researchers
have focused on developing population-specific PGS and adopting multidisciplinary
approaches to deliver equitable and generalizable genetic risk estimates (Page et al., 2022;
Smith et al., 2023). Emerging trends further emphasize the need to evaluate the utility of
PGS across a broad spectrum of diseases, including cancer and coronary heart disease,
while cautioning against the risks of overgeneralizing population-level data into individual
risk predictions (Khan et al., 2023). However, the calculation and interpretation of PGS
involve computationally demanding tasks, including managing large datasets and
addressing population genetics’ complexities, necessitating efficient algorithms and QC
protocols (Choi et al., 2020; Pain et al., 2020).

Automated genomic workflows, particularly those based on platforms like Nextflow,
address these challenges by providing scalable, reproducible pipelines that ensure accurate
data processing (Schulz et al., 2016). In this study, we developed PGSXplorer, a
comprehensive Nextflow DSL2 pipeline that integrates QC steps and multiple PGS
development algorithms to streamline the analysis of GWAS data. Our proposed pipeline
is fully Dockerized, enhancing its portability, reproducibility, and usability across different
platforms, while adhering to FAIR (Findability, Accessibility, Interoperability, and
Reusability) principles (Tommaso et al., 2017). PGSXplorer employs a suite of methods to
optimize PGS modeling, integrating well-established PGS algorithms. Our tool uniquely
supports multi-ancestry analyses, notably enhancing PGS accuracy and generalizability
across diverse populations. By incorporating genetic diversity across ancestries, it enables
the creation of robust and inclusive PGS models. Additionally, automating processes such
as genotype assignment, phasing, imputation, data filtering, and model construction makes
the genomic workflow more efficient, positioning PGSXplorer as a valuable tool for
advancing PGS research and facilitating large-scale genomic studies.
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MATERIALS AND METHODS
Pipeline development
PGSXplorer was developed using Nextflow (v24.04.3) (Tommaso et al., 2017) and the
DSL2 language and executed within a Docker container. Dockerization was employed to
ensure a consistent and reproducible environment through encapsulation of all
dependencies and software required for the analysis. A suite of specialized tools for PGS
model development were integrated into the pipeline, including PLINK (v1.9) (Chang
et al., 2015), PRSice-2 (Choi & O’Reilly, 2019), LD-Pred2 (Privé, Arbel & Vilhjálmsson,
2020), Lassosum2 (Privé et al., 2021), MegaPRS (Zhang et al., 2021), SBayesR-C (Zheng
et al., 2024), PRS-CSx (Ruan et al., 2022), and MUSSEL (Jin et al., 2023).

QC workflow of the pipeline
The QC workflow of our pipeline begins with the initial GWAS QC. This module
automates key QC processes for GWAS summary statistics to ensure data integrity and
reliability in downstream analyses. The QC module performs the following steps:

i) MAF filtering: Variants with MAF values below 0.01 are excluded to remove rare
variants that may cause noise in the analysis.

ii) INFO filtering: Variants with INFO (imputation score) values below 0.8 are removed
to enhance genotyping accuracy and minimize potential bias.

iii) Duplicate SNP removal: Duplicate SNPs are systematically identified and removed to
avoid redundant or conflicting data.

Following these steps, the filtered GWAS summary statistics are reconstructed and
prepared for subsequent stages of the workflow. These QC procedures follow standard
guidelines outlined by a previous study (Choi, Mak & O’Reilly, 2020).

Our pipeline was also designed to optimize the QC of the user-provided genotype data
through a series of automated steps: (i) filtering missing SNPs, (ii) filtering missing
individuals, (iii) minor allele frequency (MAF) filtering, (iv) Hardy–Weinberg equilibrium
(HWE) filtering, (v) relatedness check, (vi) heterozygosity assessment, and (vii) removal of
duplicate SNPs. These QC steps are streamlined and are executed using PLINK (v1.9) with
the parameters –geno, –mind, –maf, –hwe, –rel-cutoff, and –het (Chang et al., 2015).
Additionally, customized scripts written in R (v4.1.0) were employed to visualize
heterozygosity, HWE, relatedness, and MAF distributions of the given data. The specific
parameters and filtering criteria are detailed below:

i) Filtering missing SNPs: To preserve the integrity and accuracy of the genotype data,
the plink –geno parameter was used with a threshold value to remove SNPs with a
certain percentage of missing genotypes. A value of 0.02 was determined as the default
for PGSXplorer, eliminating variants with more than 2% missing SNP data across the
samples (Turner et al., 2011).

ii) Filtering missing individuals: After filtering missing SNPs, individuals with a high
rate of missing genotypes are filtered to maintain data quality. In this step of the
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pipeline, the plink –mind parameter with a value of 0.02 was set as the default value
(Turner et al., 2011).

iii) Filtering by MAF: The MAF threshold was determined to filter out rare variants that
may introduce noise or bias into the analysis. Generally, values of 0.01 to 0.05 are used
for this filtering step (Pavan et al., 2020). In this step, the default value was set to 0.05
using the plink –maf parameter.

iv) Filtering by HWE: Deviations from HWE were evaluated to identify genotyping
errors and ensure data quality. In our study, we applied HWE filtering in a
two-step process using PLINK. The first filtering step applied a strict HWE threshold
of 1e-6 to the control group. This step ensured removal of SNPs that deviated
significantly from HWE among controls. We then applied a second HWE threshold of
1e−10 to the case group. This less stringent step only targeted SNPs that showed
extreme deviations from HWE in the case data, as the stringent threshold had already
been applied to controls (Marees et al., 2018).

v) Relatedness checking: In population studies, the maximum degree of relatedness
between any pair of individuals is typically expected to be less than that of
second-degree relatives (Turner et al., 2011). To address this, PGSXplorer identifies
and filters possible sample mix-ups or family relationships that may introduce bias
downstream analyses. In this step, a default value of 0.1875 was defined for the
plink –rel-cutoff parameter.

vi) Heterozygosity assessment: Monitoring heterozygosity levels is essential for
identifying potential contamination or issues with genotyping data quality. In the
pipeline, heterozygosity filtering is performed based on +/− 3 Standard Deviations
(SD) from the mean.

vii) Removal of duplicate SNPs: To identify and remove duplicate SNPs from given
genotype dataset, we first listed the duplicate SNPs using the following command:
awk ‘{print $2}’ <input_bim_file> | sort | uniq -d > <output_duplicate_snps_list>

This command extracts SNP identifiers from the .bim file, sorts them, identifies
duplicates, saves them to a list file. Then PLINK –exclude command was used to remove
these duplicate SNPs from dataset. This process ensured that final dataset was free of
duplicate SNPs, improving the quality and reliability of our downstream analyses.

Integration of QC, phasing and imputation steps
Following the QC steps of the workflow, the filtered datasets in PLINK format are
automatically converted to VCF format for further processing. These VCF files are then
phased using Eagle (v2.4.1) (Loh et al., 2016) with reference files tailored to the GRCh38
genome build (details regarding the reference files are available on PGSXplorer’s GitHub
page). After phasing, imputation is performed using the same GRCh38-compatible
reference datasets with Beagle (v5.4) (Browning, Zhou & Browning, 2018). Subsequent to
imputation, additional QC is performed based on imputation scores to ensure data
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accuracy. The final files are then automatically converted back to PLINK format and made
ready for target ancestry inference and PGS calculations.

To include the QC steps, phasing, imputation, and visualizations in the PGSXplorer, the
inputs and outputs of each step were defined and assigned to different channels, with
separate modules created for each process as shown in Fig. 1. They were carefully designed
to filter out low-quality data, thereby enhancing the reliability of the downstream analyses.
The initial input, provided in PLINK (bed, bim, fam) or VCF formats, completes the target
and GWAS QC steps, phasing, and imputation in an automated and optimized manner.
This process prepares the data for PGS calculations. The default parameters used in these
steps are determined according to a previous study (Marees et al., 2018), but users can
provide the desired values as parameters.

Target ancestry inference
Detecting ancestry components in genomic data is a critical step in PGS model
development. In this study, the Fastmixture (Santander, Martinez & Meisner, 2024) tool
was integrated into the pipeline to perform target ancestry inference. Fastmixture utilizes
probabilistic modeling approaches to efficiently and accurately determine the proportions
of individuals belonging to different ancestral groups by processing genotype data
(Santander, Martinez & Meisner, 2024). The resulting outputs of the target ancestry
inference step were used in downstream analyses to account for population structure.

PGS modeling of genomic data
After completing the QC steps, PGSXplorer integrates four well-known PGS algorithms—
PLINK, PRSice-2, LD-Pred2 (both grid and auto), and Lassosum2 along with MegaPRS
and SBayesR-C—to generate robust PGS models from GWAS summary statistics. Each of
these tools was chosen for its distinct role and contribution to the development of PGS
models. Their selection in this study was based on their widespread recognition and
specialized capabilities in the field: (i) PLINK is a well-established tool in genetic
association studies, widely recognized for its efficiency in processing large-scale genetic
data. Its ability to filter SNPs meeting certain p-value thresholds significantly contributes to
PGS calculation (Purcell et al., 2007), (ii) PRSice-2 is highly regarded for its versatility in
handling large cohorts, requiring users to have a solid understanding of bioinformatics. It
enables the estimation of disease risk based on genetic variants and provides flexibility in
PGS model development by allowing adjustment of p-value thresholds to suit specific
research goals (Choi & O’Reilly, 2019), and (iii) LD-Pred2 enhances the accuracy of PGS
models by incorporating linkage disequilibrium (LD) information, a critical factor in
capturing the genetic architecture of complex traits. By leveraging LD, LD-Pred2 improves
the predictive power for identifying genetic variants associated with complex traits (Privé,
Arbel & Vilhjálmsson, 2020). (iv) Lassosum2 estimates PGS using GWAS summary
statistics alone and has demonstrated consistent improvements in prediction accuracy,
particularly when modeling multiple PGS derived from various parameters. It is a valuable
tool within a reference-standardized framework, especially for its ability to handle
high-dimensional genetic data and improve trait prediction (Pain et al., 2020; Privé, Arbel
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& Vilhjálmsson, 2020). (v) MegaPRS accurately estimates the effect of genetic variants on
phenotypic traits by incorporating complex inheritance models. Using the BLD-LDAK
model, it considers LD, MAF and functional characteristics of SNPs, which increases
accuracy and enables better modeling of genetic variance. Standing out for its
computational efficiency, MegaPRS offers an effective and flexible solution for genetic
predictions across different populations and traits (Zhang et al., 2021). (vi) SBayesR-C
calculates PGS using GWAS summary statistics and LD matrices, modeling genetic effect
sparsity through a finite mixture of normal distributions. It handles large-scale genetic data
efficiently, shows competitive prediction accuracy compared to methods such as LD-Pred2
and Lassosum, and allows integration with functional annotations to increase its power.
This makes it a valuable tool in the field of genetic epidemiology and individualized
medicine (Zheng et al., 2024).

Multi-ancestry PGS tools increase the accuracy of PGS models by exploiting genetic
variation across different populations, allowing for more precise modeling of allele
frequencies and LD patterns (Chen et al., 2014; Ruan et al., 2022). This approach helps
overcome the limitations of traditional methods that rely heavily on European-ancestry
data and leads to better estimates for non-European populations (Ge et al., 2022; Shim
et al., 2023). To improve the accuracy and comprehensiveness of PGS estimates,
PGSXplorer includes PRS-CSx and MUSSEL, both of which significantly enhance the

Figure 1 The schema illustrates the integration of QC steps into PGSXplorer. This workflow applies filters, including checks for missing SNPs,
individual genotype quality, MAF, HWE, relatedness, heterozygosity, and duplicate SNPs and illustrations of MAF, HWE, relatedness and het-
erozygosity distributions. Additionally, it outlines the GWAS QC, phasing, and imputation components of the pipeline.

Full-size DOI: 10.7717/peerj.18973/fig-1
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pipeline’s capabilities. (vii) PRS-CSx improves PGS predictions by integrating GWAS
summary statistics from multiple populations, which is crucial for accurately estimating
disease risk across diverse genetic backgrounds. This tool addresses the common problem
of reduced predictive power in non-European populations using a cross-population
approach (Ruan et al., 2022). (viii) MUSSEL further strengthens the pipeline by applying
advanced statistical techniques such as clustering, thresholding, empirical Bayes, which are
particularly effective in optimizing PGS across different ancestries (Jin et al., 2023).
Together, these tools overcome the limitations of single ancestor models, making the
PGSXplorer workflow for diverse global populations, and thus increasing its value in
personalized medicine and risk assessment.

Integration of PGS tools
Incorporating PGS models into PGSXplorer required carefully structuring the inputs and
outputs for each step, which were subsequently assigned to distinct Nextflow channels to
ensure seamless data flow throughout the pipeline. As illustrated in Fig. 2, each modeling
process is encapsulated within a separate module, enhancing modularity and flexibility of
our pipeline’s design. Tools that model PGS using GWAS data from a single population are
categorized as Single PGS, whereas those that incorporate data from at least two distinct
populations are defined as Multi PGS.

Generation and preparation of synthetic data
To validate the functionality of PGSXplorer, synthetic genotyping data were generated
using the HAPNEST (Wharrie et al., 2023). HAPNEST facilitates the creation of synthetic
genomic datasets representing various ethnicities, making it ideal for testing and validation
purposes. Specifically designed to support genomic research, HAPNEST utilizes
containerization through Docker or Singularity, ensuring reproducibility and ease of use.
Key features of HAPNEST include the ability to fetch diverse reference datasets customize
parameters for specific research needs, and standardize the software environment via
containerization.

In our study, the sizes of the synthetic datasets were chosen to present different
population sizes to test the performance and efficiency of our pipeline under various
conditions. The datasets included 500, 1,000 and 10,000 individuals of European (EUR)
origin, and 3,000 and 10,000 individuals of East Asian (EAS) origin. The datasets of 500
EUR, 1,000 EUR, and 3,000 EAS individuals were labeled as T1, T2, and T3, respectively.
Using these datasets, both the data processing capacity and computation times of the
pipeline were evaluated. Synthetic genomic data were generated for all chromosomes,
ensuring comprehensive coverage. Different populations were simulated by modifying
polygenicity and genotype proportion values in the HAPNEST configuration file. The
commands used to generate these datasets with HAPNEST are as follows:

Genotype data generation: docker run -v /HAPNEST/data:/data -it sophiewharrie/
intervene-synthetic-data generate_geno 16 /data/config.yaml

Phenotype data generation: docker run -v /HAPNEST/data:/data -it sophiewharrie/
intervene-synthetic-data generate_pheno data/config.yaml
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The configuration files used in this process, which detail the parameters and population
structures, have been shared on the PGSXplorer GitHub page (https://github.com/
tutkuyaras/PGSXplorer), along with the datasets themselves. These synthetic datasets were
also utilized to calculate GWAS summary statistics using PLINK2 (Chang et al., 2015).
Logistic regression models were employed with the command: plink2 –bfile target –pheno
phenotype_file.txt –glm hide-covar –covar target.eigenvec –ci 0.95 –out gwas_sumstat.

RESULTS
All results and figures presented in this study were derived from the analysis performed
with PGSXplorer. The figures are intended to provide users with an overview of the tool’s
output on synthetic data.

Systematic archiving and visualization of genomic quality control
PGSXplorer is designed to systematically archive the outputs generated at each stage of the
QC process in dedicated directories. This approach ensures that the data from all seven QC
steps are comprehensively recorded and filtered according to user-defined parameters,
enhancing transparency and facilitating downstream analyses. The outputs, ranging from
initial data filtration to final QC reports, are clearly organized and readily accessible for
further review.

In addition to this structured archiving, the QC module also includes automated
graphical representations of key metrics. As shown in Fig. 3, distributions of
heterozygosity, HWE, inbreeding coefficients (Pi-hat or IBD), and MAF are visualized and
automatically generated for user inspection. QC graph results for T1 and T3 are also given

Figure 2 The schema illustrates the workflow steps integrated into the Nextflow script. The QC stage
is followed by principal component analysis (PCA) to account for population structure and fastmixture.
Afterward, optional tools for PGS construction are available. These include multi-ancestry PGS tools
such as PRS-CSx and MUSSEL, alongside single-ancestry PGS tools like PLINK, PRSice-2, and LD-Pred2
(available in both auto and grid modes), Lassosum2, MegaPRS and SBayesR-C.

Full-size DOI: 10.7717/peerj.18973/fig-2
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in Figs. S1 and S2, respectively. These visual outputs offer critical insights into the quality
of genomic data, enabling rapid identification of potential issues such as population
stratification or genotyping errors. By combining progressive data archiving with real-time
graphical analysis, the QC process becomes both comprehensive and user-friendly,
ensuring high-quality data is prepared for subsequent genomic analyses.

The SNP and individual information eliminated according to the parameters used in the
QC steps are presented to the user. Table 1 shows the number of SNPs eliminated during
QC for the three datasets tested with PGSXplorer. Since a synthetic dataset was used and
the GRCh38 rsID (Reference SNP cluster ID) list provided by HAPNEST is common, the
initial number of variants is identical. However, the number of eliminated variants and the
final number of variants remaining differ across populations. The default parameters of
PGSXplorer were applied during QC steps, but users can modify these parameters to suit
their specific research objectives and study requirements.

Target ancestry inference
Fastmixture, integrated into the pipeline for target ancestry inference, offers an efficient
method for analyzing the population structure of genetic data (Santander, Martinez &
Meisner, 2024). The Q file generated by this module provides users with ancestry
proportions for individuals, indicating the probabilities of each individual belonging to
different populations. The .p file, on the other hand, contains allele frequencies specific to
each population for genetic variants. This file is particularly useful for examining genetic
differences between populations and identifying population-specific genetic patterns.

PGS modeling
The genomic data generated during the QC steps serve as input to the PGS modules,
enabling customized analyses. Users can specify which models to execute by using the
command nextflow run main.nf–help, ensuring that only the desired modules are and
unnecessary computations are avoided. By default, all tools are set to run automatically,
except for MUSSEL, which is disabled due to its high computational demands. MUSSEL
requires substantial processing power and is designed to be executed only on servers,
providing users with the flexibility to opt in for resource-intensive analyses.

As outputs of the PLINK algorithm, the first of the single PGS models, individual-based
PGS were generated across seven different p-value thresholds. The resulting scores were
stored separately in the “outputs” folder. Table S1 presents the AUC and R² values
calculated for the PGS from three different target datasets during the experimentation and
optimization phases of PGSXplorer.

The PRSice-2 module generates visual outputs that summarize the performance of PGS
models. Figure 4 illustrates the bar plot and high-resolution plot generated based on
p-value thresholds and PGS model fit. Along with these visual outputs, the pipeline
provides several additional result files, including a list of the best-fitting PGS values
determined by the regression model (.best), the number of SNPs used for PGS calculation
at each p-value threshold, along with the corresponding R2 and p-values (.prsice), a
summary of the model (.summary), and detailed log files. For the LD-Pred2 method, two
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approaches—auto and grid—have been integrated into the pipeline, offering graphical
outputs such as heritability (h2) and p-value plots for the auto model, and GLM-Z score
plots for the grid model, as shown in Fig. 5. Additionally, files containing individual
principal components and PGS are included in the outputs folder.

Figure 3 The schema illustrates the graphical analysis of key QC steps in the PGSXplorer pipeline. The graphs of HWE, pi-hat, heterozygosity
rates, MAF distributions, and overall HWE distributions shown in this figure are obtained from the analysis of the PGSXplorer QCmodule using the
target data of the European population of 1,000 individuals (T2) generated with HAPNEST. Full-size DOI: 10.7717/peerj.18973/fig-3
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Lassosum2, which leverages penalized regression to account for LD, provides an
efficient and scalable approach for large datasets. As part of the output, graphical
representations, including GLM-Z score graph and post-processed (Postp) plots, are
provided to visualize the performance of the Lassosum2 model, as shown in Fig. 6 (the plot
for T3 is presented in Fig. S3).

MegaPRS and SBayesR-C offer complementary functionalities for PGS modeling, each
providing detailed outputs tailored to user needs. MegaPRS supports various statistical
models, with BayesR set as the default, allowing users to select the most appropriate model
for their data. The outputs include summary files, parameters, correlations, and the model
that delivers the best result, all stored in the output folder. Similarly, SBayesR-C generates
comprehensive results, including SNP weights and other key metrics for PGS calculation.
The output file contains information such as SNP IDs, effective alleles, combined effects at
the genotype scale (BETA), probabilities of causation (PIP), and effects at the last iteration
(BETAlast).

PRS-CSx, a cross-population PGS modeling approach, calculates PGSs separately for
each of the two or more GWAS datasets used. If the –meta parameter is applied, the output
includes a meta PGS file that combines SNP effect sizes across populations using
inverse-variance weighted meta-analysis of the population-specific posterior effect size
estimates. All generated files are saved in the outputs folder. Figure 7 shows the
distribution of PRS-CSx module results computed with PGSXplorer, using the T2 (EUR-
1,000) and T3 (EAS-3,000) datasets. Figure S4 presents similar results for the T1 (EUR-
500) dataset. The integratedMUSSEL tool generates several important outputs. It produces
population-specific PGS files with scores calculated for each population based on their
genetic datasets and summary statistics, as well as meta-PGS files created using the inverse
variance weighted meta-analysis method to combine scores across populations.
Additionally, it includes files with SNP-level posterior effect size estimates for each
population and meta-analysis results. Configuration files detailing the parameters used in
the analysis, such as selected SNPs and population settings, are also provided to the user.

Table 1 Number of remaining SNPs after each filtering steps during the quality control process.

Ancestry Number of
individuals

Initial
number
of SNPs

Number of
remaining
SNP after
–geno 0.02

Number of
remaining
SNP after
–mind 0.02

Number of
remaining
SNP after
–maf 0.05

Number of
remaining
SNP after
–hwe 10−6

Number of
remaining
SNP after
– hwe
10−10

Number of
remaining
SNP after
–pihat
0.185

Number of
remaining SNPs
after remove
duplicates

EUR
(T1)

500 1,329,052 1,329,052 1,329,052 1,041,531 1,041,531 1,041,531 1,041,531 1,023,045

EUR
(T2)

1,000 1,329,052 1,329,052 1,329,052 1,041,708 1,041,708 1,041,708 1,041,708 1,023,224

EAS
(T3)

3,000 1,329,052 1,329,052 1,329,052 949,527 949,527 949,526 949,526 932,520
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Computational performance metrics of PGSXplorer
Computational metrics of the PGSXplorer tool, such as CPU utilization and execution
time, are provided to users through Nextflow parameters: -with-report pipeline_report.html
and -with-timeline timeline.html. These metrics offer detailed insights into the
computational performance of the pipeline. We present these metrics for three synthetic
datasets of varying sizes—T1 (EUR-500), T2 (EUR-1,000), and T3 (EAS-3,000)—used to
demonstrate the proper functioning of PGSXplorer. Analyses were conducted on
chromosomes 1 and 2, and detailed metrics, including runtime and CPU utilization for
each dataset, are provided in Table S2. This comprehensive reporting provides users with a
clear understanding of the pipeline’s resource requirements across various data sizes and
scenarios.

DISCUSSION
Herein, we developed and implemented PGSXplorer, a comprehensive and automated
workflow designed to address the challenges associated with calculating PGS from
large-scale genomic datasets. The rapid advancement of NGS technologies and the

Figure 4 Visualizations generated from the PRSice-2 module results. Bar Plots (A–C) and high-resolution plots (D–F) generated using PRSice-2
for T1 (EUR-500), T2 (EUR-1,000) and T3 (EAS-3,000), respectively. The bar plots (A–C) display the PGS model fit across different p-value
thresholds, while the high-resolution plots (D–F) provide a detailed visualization of the model’s performance for the same targets.

Full-size DOI: 10.7717/peerj.18973/fig-4
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increasing adoption of genomic data-sharing initiatives accelerated individualized
medicine efforts (Shi & Wu, 2017). In parallel, GWAS studies, that investigate the
relationship between genetic variants and human traits across large populations, have
increased in number and size, enabling better identification of genetic factors contributing
to complex diseases. Unlike monogenic diseases, where a single gene can be pinpointed as
the cause, complex diseases are influenced by multiple genetic and environmental factors,
making the concept of PGS pivotal for accurate risk prediction (Choi, Mak & O’Reilly,
2020; Lu et al., 2021).

The accurate calculation of PGS depends heavily on the QC of genomic data, which is
one of the most critical steps in any genomic analysis. QC processes are computationally

Figure 5 Visualizations generated from the LDpred2 auto ve grid models for T1 (EUR-500) and T2 (EUR-1,000). (A) and (C) display the auto
model results for T1 (EUR-500) and T2 (EUR-1,000), respectively, showing h2 and p-value relationships. (B) and (D) present the GLM-Z score plots
for the grid model for T1 (EUR-500) and T2 (EUR-1,000), respectively. Full-size DOI: 10.7717/peerj.18973/fig-5
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intensive and must handle the large volumes of data generated by different platforms (SNP
arrays, NGS, and other high-throughput genotyping technologies) requiring expertise in
genomics, statistics, and coding (Zhao et al., 2018). Additionally, combining data from
multiple platforms/centers increases the complexity of PGS calculations. Noise in finite
GWAS samples and ethical considerations regarding the interpretation of genetic risk
further complicate this process. Effective computational methods, such as LD-based
clustering and advanced prioritization algorithms, are critical for improving the accuracy

Figure 6 Visualizations generated from the Lassosum2 module. (A) and (B) display the auto model results for T1 (EUR-500) and T2 (EUR-
1,000), respectively, displaying the model fit and performance based on the penalized regression approach for PGS calculation.

Full-size DOI: 10.7717/peerj.18973/fig-6

Figure 7 The scatter plots illustrate the distribution of PGS calculated using the PRS-CSx model for chromosome 22. (A) represents PGS are
calculated with T2 (EUR-1,000) and (B) represents PGS are calculated with T3 (EAS-3,000). The red dots represent scores derived from the EAS
GWAS data, the blue dots represent scores derived from the EUR GWAS data, and the gray dots show the results of the meta-analysis, which
combines both datasets using inverse-variance weighted effect sizes. Full-size DOI: 10.7717/peerj.18973/fig-7
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of PGS (Pain et al., 2020). Moreover, proper handling of factors such as SNP quality, HWE,
relatedness, heterozygosity, and duplicate SNPs are crucial in preventing false-positive
results in association studies, underscoring the importance of robust data filtering at every
step of genomic analysis.

PGSXplorer integrates several widely used PGS modeling tools, into a streamlined
workflow that automates key steps in QC and PGS modeling. This integration not only
enhances the accuracy and efficiency of genomic data processing but also allows users to
inspect filtered genomic data at each stage, providing flexibility in the analysis. By storing
filtered data as separate files at each QC stage, PGSXplorer enables researchers to explore
results based on specific filtering criteria, making it easier to refine the data for further
downstream analysis. In addition, each PGS tool has been modularly integrated into the
pipeline, allowing users to selectively employ only the tools relevant to their specific
research objectives. This flexible design optimizes efficiency by avoiding unnecessary
computational steps, ensuring that the workflow is tailored to the precise needs of the
study, thereby enhancing both time management and resource utilization.

The results generated using synthetic datasets have demonstrated that PGSXplorer is a
scalable solution for analyzing genetic risk factors across diverse populations and genomic
dataset sizes. One of the most significant strengths of PGSXplorer lies in its support for
multi-ancestry genomic analysis through tools such as PRS-CSx and MUSSEL. These tools
transcend the limitations of traditional single-population analyses by incorporating genetic
data from multiple populations, significantly enhancing the generalizability of PGS
models. Furthermore, by facilitating cross-population risk prediction, PGSXplorer offers a
more inclusive approach to PGS modeling, which is critical for improving the accuracy of
genetic risk prediction across different ethnic groups. This inclusivity ensures that the
workflow can be adapted to various genomic studies, providing a valuable tool for
researchers aiming to understand the genetic architecture of complex diseases and develop
more accurate models. Ultimately, PGSXplorer’s automation and flexibility make it an
indispensable tool in advancing PGS research, paving the way for broader applications in
individualized medicine across diverse populations.

Currently, PGSXplorer represents a notable advancement over existing pipelines for
PGS calculations by providing an open-source, user-friendly solution that is both powerful
and accessible. What truly sets PGSXplorer apart is its ability to integrate essential tools
such as PLINK, PLINK2, R, Bcftools, Eagle, Beagle, and Python into a single Docker image
(tutkuyaras/pgsxplorer_image:v2). This encapsulation ensures that all necessary
dependencies are available in the specified versions, eliminating compatibility issues and
allowing users to focus solely on their analyses. Users can simply pull this image from
Docker Hub using the command “docker pull tutkuyaras/pgsxplorer_image:v2” to have
immediate access to the full suite of tools needed for PGS calculations. In addition to
simplifying software dependencies, PGSXplorer leverages the power of Nextflow to create a
streamlined, reproducible workflow that can be run seamlessly across different computing
environments. These flexibilities allow researchers at any skill level to perform complex
genomic analyses without needing to invest significant time in setting up software
dependencies or environment configurations.
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Upon conducting a comprehensive comparison with existing tools, PGSBuilder (Lee
et al., 2023) distinguishes itself by supporting six PGS calculation methods (Clumping and
Thresholding, Lassosum, LDPred2, GenEpi, PRS-CS, and PRSice-2) and integrating
variant annotation functionalities. One of its notable strengths is the web-based interactive
interface, which significantly enhances accessibility and ease of use for researchers lacking
computational expertise. However, PGSBuilder primarily focuses on single-ancestry data.
In contrast, PGSXplorer accommodates both single- and multi-ancestry datasets and offers
extensive flexibility by allowing users to customize QC parameters and other workflow
steps. This makes PGSXplorer highly adaptable to diverse research needs.

The PGSToolKit (van der Laan, 2018) provides a streamlined workflow through a
structured data format and a single configuration file. It supports PGS calculations with
PRS-CS, RapidoPGS, and PRSice-2 while including the allelic scoring function of PLINK2.
PGSXplorer, however, goes beyond these features by integrating phasing and imputation
capabilities, ensuring compatibility with a broader range of datasets. Additionally,
PGSXplorer offers a more comprehensive QC process that can be tailored for
multi-ancestry data and allows users to modify workflow parameters to suit their
specific objectives.

Another recent and significant tool in the field, GenoPred (Pain, Al-Chalabi & Lewis,
2024), is a user-friendly platform designed to facilitate automated and standardized PGS
generation. Its ability to handle multiple target file types, support multiple genome
assemblies (GRCh36, GRCh37 and GRCh38), perform ancestry inference, calculate scores
in the target sample, and generate detailed individual and sample-level reports are key
strengths. While our tool currently focuses on binary case-control datasets aligned to
GRCh38 in VCF and PLINK formats, it distinguishes itself with automated graphical
outputs. These outputs include visualizations for QC metrics such as HWE, MAF,
relatedness, and heterozygosity distributions, as well as results from models like PRSice-2,
LDpred2, and Lassosum2. Additionally, PGSXplorer integrates multi-ancestry tools,
including PRS-CSx and MUSSEL, to enhance accuracy when working with
diverse populations.

A noteworthy tool worth discussion is the pgsc_calc (Lambert et al., 2024) pipeline is
notable for its ancestry inference module, which matches PGS to relevant populations
based on reference datasets. This capability is a strong advantage. However, pgsc_calc
relies on preconfigured workflows with limited flexibility for parameter adjustments.
PGSXplorer, on the other hand, enables users to produce PGS using nine different tools
while offering customizable parameters. This flexibility empowers researchers to tailor
analyses to their specific research questions, significantly enhancing the pipeline’s utility
and adaptability. A valuable resource, the Michigan Imputation Server (Forer et al., 2024)
focuses on improving the interpretability of PGS results through detailed reports and
graphical outputs. While this aligns with PGSXplorer’s goal of providing automated
visualizations, PGSXplorer further stands out by integrating tools for multi-ancestry
analyses. This capability enables PGSXplorer to process datasets from diverse populations,
providing broader applicability in genetic research.
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In summary, PGSXplorer offers a modular, Nextflow-based architecture that ensures
scalability, portability, and reproducibility. By combining robust QC processes, flexible
workflows, and automated graphical outputs, it addresses key limitations of existing tools.
Its integration of multi-ancestry tools and advanced PGS construction approaches such
PRS-CSx andMUSSEL makes PGSXplorer a comprehensive solution for PGS construction
and analysis across diverse datasets. Building on this foundation, future updates will
further enhance the tool’s capabilities to support a wider range of data formats, study
designs, and genomic references. In future updates, our tool will be expanded to include
support for additional data formats such as BGEN, in addition to the currently supported
VCF and PLINK formats. Currently designed for case-control studies, the tool will also
include modules for datasets with continuous traits (such as body mass index (BMI), blood
pressure, insulin resistance etc.). Additionally, a validation module will be introduced to
enable users to assess the performance of their PGS models using independent datasets
where the phenotype of interest has been measured. Our tool, which currently only
supports GRCh38, will also be enhanced with an automatic versioning module that
ensures compatibility with GRCh37 datasets.

CONCLUSIONS
PGSXplorer stands out as a comprehensive and user-friendly tool developed to address the
challenges that arise in analyzing large-scale genomic data. By automating complex
processes such as the calculation of PGS and QC of genomic data, it increases accuracy
while significantly reducing data processing times. By integrating data from different
populations, it allows for a more inclusive and generalizable assessment of genetic
susceptibility in multi-origin analyses. Additionally, its automation and optimization
minimize the complexities associated with QC steps and PGS calculations, particularly for
binary traits, making it an indispensable resource for genomic research. By removing many
technical barriers inherent in genomic data analysis, PGSXplorer enables researchers to
focus on uncovering meaningful insights from their data, thus fostering broader adoption
in precision medicine and genetic studies.

By increasing reproducibility and portability through Docker encapsulation,
PGSXplorer offers a practical solution for both experienced and new researchers. As
detailed in the discussion, future updates are planned to add continuous feature type,
different input formats and genomic assemblies, which will further expand the impact and
application potential of PGSXplorer in the research field. In conclusion, PGSXplorer is a
step forward in genetic research, contributing to more precise and reliable risk assessments
in individualized medicine and providing a wide range of applications in genetic research.
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