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ABSTRACT
MicroRNAs represent major regulatory components of the disease epigenome and they
constitute powerful biomarkers for the accurate diagnosis and prognosis of various
diseases, including cancers. The advent of high-throughput technologies facilitated
the generation of a vast amount of miRNA-cancer association data. Computational
approaches have been utilized widely to effectively analyze and interpret these data
towards the identification of miRNA signatures for diverse types of cancers. Herein, a
novel computational workflow was applied to discover core sets of miRNA interactions
for the major groups of neoplastic diseases by employing network-based methods. To
this end, miRNA-cancer association data from four comprehensive publicly available
resources were utilized for constructing miRNA-centered networks for each major
group of neoplasms. The corresponding miRNA-miRNA interactions were inferred
based on shared functionally related target genes. The topological attributes of the
generatednetworkswere investigated in order to detect clusters of highly interconnected
miRNAs that form core modules in each network. Those modules that exhibited
the highest degree of mutual exclusivity were selected from each graph. In this way,
neoplasm-specific miRNA modules were identified that could represent potential
signatures for the corresponding diseases.

Subjects Bioinformatics, Genomics
Keywords miRNA interactions, Neoplasms, Bioinformatics, Network analysis, Mutual exclusiv-
ity, Modules, Diagnosis

INTRODUCTION
MicroRNAs (miRNAs) are endogenous, small (∼22 nucleotides in length), non-protein-
coding RNAs that play a critical role in regulating the expression of target mRNAs at the
post-transcriptional level by complementary base-pairing of the so-called miRNA ‘‘seed’’
region with the 3′ UTR region of the target (Bartel, 2004; Kehl et al., 2017). In this way,
miRNAs reduce the stability of the target mRNA and/or inhibit its translation, thereby
downregulating the expression of the corresponding gene (Ambros, 2004).

A singlemiRNA can potentially regulate the expression ofmultiple genes, and conversely,
a gene can be targeted by numerous miRNAs. Because of this property, miRNAs have been

How to cite this article Arshinchi Bonab R, Asfa S, Kontou P, Karakülah G, Pavlopoulou A. 2022. Identification of neoplasm-specific
signatures of miRNA interactions by employing a systems biology approach. PeerJ 10:e14149 http://doi.org/10.7717/peerj.14149

https://peerj.com
mailto:gokhan.karakulah@deu.edu.tr
mailto:athanasia.pavlopoulou@ibg.edu.tr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.14149
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.14149


reported to be dysregulated in diverse human diseases (Ardekani & Naeini, 2010; Chung et
al., 2021; Climent et al., 2020; Juzwik et al., 2019; Kweon et al., 2020; Lam et al., 2018; Ojha
et al., 2019; Sell et al., 2020; Tufekci et al., 2014; Zhao et al., 2016). Due to their prominent
role in diseases, miRNAs are regarded as powerful diagnostic and prognostic biomarkers
(Condrat et al., 2020; Gandellini, Giovannetti & Nicassio, 2015). As such, miRNA signatures
would enable the timely, accurate, non-invasive diagnosis of diverse diseases, including
cancers (Song et al., 2017; Zabolotneva et al., 2012).

Several miRNAs may function either as oncogenes (‘‘oncomiRs’’) or tumor suppressors
(‘‘suppressomiRs’’), over- and under-expressed, respectively, in multiple cancers (Zhang
et al., 2007). For example, the known oncomiR miR-21 is one of the most frequently
upregulated miRNAs in solid tumours (Bautista-Sanchez et al., 2020; Jenike & Halushka,
2021;Wu, Li & Li, 2015), and also members of the miR-34 family are considered as potent
tumor suppressive miRNAs (Kalfert et al., 2020; Zhang, Liao & Tang, 2019); MRX34, a
liposomalmiR-34amimic has been evaluated in patients with advanced solid tumors (Hong
et al., 2020). In addition, miR-143, miR-221/222, and miR-452 are considered potent
biomarkers for tumor stratification and diagnosis (Puerta-Gil et al., 2012). Moreover,
miRNAs have prognostic potential, as they can predict cancer patient survival (Zhou et al.,
2015).

Bioinformatics approaches have been widely used to identify and predict miRNA
diagnostic signatures for diverse types/subtypes of cancers (Nunez Lopez et al., 2018;
Rehman et al., 2019; Shams et al., 2020; Yang, Zhang & Yang, 2019). However, despite the
wealth of studies on cancer-associatedmiRNAs and the identification ofmiRNAs that could
serve as potential diagnostic biomarkers, these studies have largely focused on certain
types/subtypes of cancers. Of note, these miRNA signatures ignore mutual exclusivity,
i.e., miRNAs used to detect a particular type/subtype of cancer and not another. To the
best of the authors’ knowledge, identification of neoplasm-specific miRNAs that are
detected exclusively in a particular type/subtype of cancer is lacking. Therefore, there is an
emerging need for identifying core miRNA signatures for characterizing diverse cancers.
The findings of this study could be considered towards reducing the cases of spurious
cancer diagnosis and improving neoplasm-specific detection by the application of panels
of miRNAs exclusive and unique to the major types of cancers.

In the present study, we have employed an integrated bioinformatics methodology
for the identification of core sets of miRNAs specific to a particular neoplastic disease,
by exploiting relevant data from publicly available resources. Only highly connected
miRNA modules displaying significant mutual exclusivity were selected for each group
of neoplasms. The component miRNAs of those modules could potentially constitute
biomarkers for distinguishing different types of cancers, which could complement and
update the existing ones

MATERIALS & METHODS
A graphical presentation of the overall workflow of this study is depicted in Fig. 1.
All analyses were performed in the R statistical computing environment v.4.2.0
(https://www.r-project.org, accessed on 10 January 2022), unless otherwise stated.
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Figure 1 Graphical illustration of the workflow of this study.
Full-size DOI: 10.7717/peerj.14149/fig-1

Acquisition of miRNA-neoplasm associations
The miRNA and neoplasm associations were retrieved from four comprehensive publicly
available databases: (a) miR2Disease (Jiang et al., 2009), a manually curated repository of
miRNAs deregulated in diverse human diseases, (b) miRCancer (Xie et al., 2013) contains
miRNA–cancer association data extracted through literature mining, (c) dbDEMC (Yang
et al., 2017), a database of differentially regulated miRNAs in cancers, and (d) HMDD
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v3.2 (Huang et al., 2019b), a repository for experimentally verified human miRNA-
disease relationships. In-house R scripts were used to extract the miRNA-cancer pairwise
associations from those databases; duplicate entries were removed.

Nomenclature
In order to maintain a consistent nomenclature for the neoplasm names from the four
databases, the disease terms were annotated according to the International Classification
of Diseases and Related Health Problems (ICD), revision 11 (ICD-11) (Pickett & Anderson,
2018). ICD is maintained by the World Health Organization (WHO) and represents the
global, comprehensive reference for the collection, processing and hierarchical classification
of diseases, which can be used accurately and effectively to investigate the relationships
among different diseases. NCBI’s Medical Subject Headings (MeSH) (Lipscomb, 2000),
a comprehensive, hierarchically-organized vocabulary for subject indexing, cataloguing
and searching biomedical and life sciences-related information, was used for assigning the
neoplastic diseases to broader groups.

Official gene symbols were assigned to gene names according to the HUGO Gene
Nomenclature Committee (HGNC) (Tweedie et al., 2021); the official miRNA names in
miRBase (Kozomara, Birgaoanu & Griffiths-Jones, 2019) were used in this study.

Prediction of miRNA target genes
The corresponding gene targets of the miRNAs under investigation were identified. To
this end, both the experimentally supported and predicted mRNA targets of the neoplasm-
associated miRNAs were retrieved with the usage of the following state-of-the-art software
tools: (i) microT_CDS has implemented the target prediction algorithm DIANA-microT-
CDS (Paraskevopoulou et al., 2013); (ii) TargetScan searches for the presence of conserved
sites that match the seed region of each miRNA (Agarwal et al., 2015); (iii) miRDB predicts
functional miRNA gene targets by machine learning modeling of target gene expression
data (Chen & Wang, 2020; Liu & Wang, 2019); (iv) PicTar relies on an algorithm for the
identification of common microRNA targets (Krek et al., 2005); (v) miRanda, which is
available online as part of the miRanda-mirSVR tool, depends on evolutionarily conserved
miRNA-targets (Enright et al., 2003). To enhance the robustness of the prediction accuracy,
only those target genes predicted by more than three tools were included in the study.

Integration of miRNA-miRNA interactions
The miRNA-miRNA pairwise functional relationships were assembled and inferred from
two diverse sources, subsequently followed by merging and removal of duplicate miRNA-
miRNA interactions.

GOSemSim (Yu et al., 2010), utilizes information-theoretic measurement to find
similarities between genes based on Gene Ontology (GO) (Ashburner et al., 2000) terms.
Thus, GOSemSim assigns a function to genes according to shared GO annotations. A
miRNA-miRNA matrix was created based on the degree of functional similarity of their
target genes; the higher the degree of gene relatedness, the higher the association score of
the respective miRNAs.
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In addition, miRNA-miRNA pairwise relationships were obtained from MIRGOFs
(Yang et al., 2018), which measures functional similarities for miRNAs based on the GO
annotation of their corresponding target genes by adopting two novel features: (i) it
utilizes a new GO semantic similarity metric which considers both common ancestors and
descendants of GO terms; (ii) it computes similarity between GO sets in an asymmetric
manner, and weights each GO term by its statistical significance.

Only those miRNA pairwise interactions, from GoSemSim and MIRGOFs, with weight
score ≥ 0.6 (where ‘‘1’’ is the highest) were selected to ensure robustness.

Construction of miRNA-neoplasm networks
Firstly, miRNA-neoplasm networks were constructed for each group of neoplasms, where
the links were assigned two weights, one fromMIRGOFs (Yang et al., 2018) and the second
one from the calculated miRNA matrix based on GOSemSim.

The topological features of the generated networks were investigated through Cytoscape
(v.3.9.1) (Shannon et al., 2003), a software platform for network manipulation and
visualization. Arena3Dweb, an interactive, web-based tool for the visualization ofmultilayer
networks in tree-dimensional space was also used for network depiction (Karatzas et al.,
2021).

Identification of mutually exclusive cancer-relevant miRNA modules
To achieve the maximum possible mutual exclusivity, first, unique miRNAs were detected
in each neoplasm. Second, the igraph package in R was used to calculate the node degree
distribution (Barabasi, Gulbahce & Loscalzo, 2011) and clustering coefficient (i.e., an
estimate of the tendency of the nodes in a graph to cluster together) (Watts & Strogatz,
1998) in each miRNA-neoplasm network (a total of thirty graphs). Then, the degree
distribution was applied and a simultaneous comparison was performed between the 30
networks in order to find modules of miRNAs that are included in one neoplasm and
not in the others. An in-house R script was used in order to handle the complexity of the
datasets. Every dataset was included in a hash and the mutually exclusive modules were
detected.

RESULTS
Functionally linked diseases tend to share common epigenetic mechanisms to ensure
the coordinated regulation of their causative genes (Zinani, Keseroglu & Ozbudak, 2022).
MiRNAs cooperate towards gene co-targeting and co-regulation in various neoplastic
diseases, and hence, tend to form densely connected communities in the disease regulome
(Bryan et al., 2014). Pivoted on this premise, the aim of this study was to explore the
miRNA-miRNA interaction networks for diverse groups of neoplastic diseases, based on
the functional relations of their corresponding target genes, towards the discovery of core
sets of miRNAs per cancer that could represent potential signatures for each cancer type.
To this end, this work sought to identify tightly interconnected modules per neoplasm with
the highest possible degree of mutual exclusivity based on network topological properties.
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Neoplasm classification
All neoplasms were classified into thirty major groups using first the ICD-11 standard
hierarchy for medical terms and then the MeSH vocabulary for assigning those terms to
broader classes (Table 1). For example, the ICD terms ‘adenocarcinoma of lung’, ‘follicular
carcinoma of thyroid gland’, and ‘adenoid cystic carcinoma’ were classified under the
broader MeSH term ‘adenocarcinoma’. The ambiguous terms were removed from the
subsequent stages of the analysis.

Construction of miRNA-miRNA graphs per neoplasm
The miRNA-neoplasm bipartite graphs were constructed by relying entirely on
experimentally known miRNA-cancer associations assembled and integrated from four
diverse resources.

The miRNA-miRNA interactions in the corresponding thirty monopartite networks
were inferred from two different sources, directly and indirectly. In the former case, the
pairwise miRNA associations were obtained from miRGOFS which includes miRNA-
miRNA similarities computed with respect to the functional relationships of their target
genes according to shared GO terms. In the latter case, miRNA targets were first detected
through the consensus output of more than three miRNA-gene interactions databases,
which include both experimentally supported and predicted entries. Then, GOSemSim
was deployed, where the similarities for each pair of miRNAs were computed based on
the functional annotation of their target genes according to GO; the more semantically
related two GO terms, the higher the degree of association of the corresponding genes. The
miRNA-miRNA pairs from both sources were combined and the duplicates were removed;
a total of 2604 unique miRNAs were detected across the thirty neoplasms (Table S1).

The miRNAs hsa-miR-101-3p, hsa-miR-145-5p, hsa-miR-223-3p were found in all
30 types of cancers (Table S1). Furthermore, the well-studied oncomir miR-21, as well
as the suppressomir miR-34a, were detected in 29 neoplasms, except testicular cancers.
Fifteen unique miRNAs were found in ten neoplasms, namely, brain (hsa-miR-291-5p),
colorectal (hsa-miR-103a-1-5p), head and neck (hsa-miR-6836-3p), liver (hsa-miR-199a-
1-5p, hsa-miR-199a-2-5p), lung (hsa-miR-886-5p, hsa-miR-886-3p, hsa-mir-320a-3p),
ovarian (hsa-miR-526a-5p), skin (hsa-miR-3689c), stomach (hsa-miR-7156-3p), thyroid
(hsa-miR-5686, hsa-miR-199a-3p, hsa-miR-199b-3p), urinary bladder (hsa-miR-498-3p).

All thirty networks are very dense with an average estimated clustering coefficient∼0.89
(where ‘1’ is the highest value). This indicates that the nodes in the given graphs exhibit
a high tendency to cluster together. Despite the stringent cutoff values, the number of
significant links is quite large, and as such, no visually discerniblemodules could be detected
in any of the networks. Based on topological analyses, all graphs have a random degree
distribution, where the node degrees (i.e., the number of connections of a given node to
neighboring nodes) follow a Poisson distribution, unlike the biological networks which are
scale-free and are dominated by few ‘hubs’ (i.e., highly connected nodes) (Barabasi, 2009;
Barabasi, Gulbahce & Loscalzo, 2011; Goh et al., 2007; Kontou et al., 2016). This is probably
attributed to the ‘‘promiscuous’’ nature of miRNAs to potentially target numerous genes,
resulting in this way to a high number of corresponding miRNA connections.
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Table 1 Major classes of neoplasms, neoplasm-associated miRNAs andmiRNA-miRNA interactions.

Neoplasm Unique miRNAs miRNA pairs

Adenocarcinoma 551 51,455
Adrenal Gland Neoplasms 431 22,150
Biliary Tract Neoplasms 1,050 147,665
Brain Neoplasms 1,679 267,717
Breast Neoplasms 1,762 288,200
Colorectal Neoplasms 1,821 304,757
Endocrine Gland Neoplasm 39 241
Esophageal Neoplasms 1,806 301,059
Eye Neoplasms 125 2,885
Head and Neck Neoplasms 1249 155,197
Hematologic Neoplasms 54 492
Intestinal Neoplasms 403 28,209
Kidney Neoplasms 1,252 152,880
Leukemia 286 15,275
Liver Neoplasms 1,463 266,584
Lung Neoplasms 1,736 282,743
Lymphoma 1,330 177,172
Nerve Tissue Neoplasms 211 7,005
Ovarian Neoplasms 1,404 245,655
Pancreatic Neoplasms 1,701 272,487
Pleural Neoplasms 112 2,928
Prostatic Neoplasms 1,110 164,209
Sarcoma 1,378 235,334
Skin Neoplasms 1,197 143,565
Squamous Cell Carcinomas 884 118,173
Stomach Neoplasms 1,660 260,636
Testicular Neoplasms 178 4,690
Thyroid Neoplasms 1,108 126,140
Urinary Bladder Neoplasms 1,528 224,985
Uterine Neoplasms 329 18,475

In order to infer less dense and more robust networks, only those links with weights
above the 90th percentile per network were selected. In this way, the highest scoring
miRNA-miRNA interactions were used for network construction and subsequent module
detection. After pruning, there were 1,893 unique miRNAs across neoplasms, with the
number of miRNAs per neoplasm ranging from 39 (endocrine gland neoplasm) to 1,821
(colorectal neoplasms). Consequently, the number of the corresponding pairwise miRNA-
miRNA associations was reduced significantly (Table 1 and Table S2). Noteworthy, this is
observed in a more pronounced way in the more populated graphs, since the number of
potential miRNA connections increases exponentially with an increase in the number of
member miRNAs. As it is shown in Fig. 2, the endocrine gland neoplasm miRNA network
becomes less dense with a reduced number of nodes (miRNAs) and connections (miRNA
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entire network 90th percentile

Figure 2 Endocrine gland neoplasmmiRNA-miRNA graph. The nodes represent miRNAs and the con-
necting lines indicate the functional relations between miRNAs. In the original network (left) there are 70
nodes and 2,415 pairs, whereas in the pruned/filtered network (right) there are 39 nodes and 241 links.

Full-size DOI: 10.7717/peerj.14149/fig-2

relations) when the upper 10th percentile of miRNA-miRNA links was used for graph
construction.

Detection of neoplasm-specific miRNA modules
The goal of this study was to detect distinct subgraphs within the neoplasm graphs
which cannot be contained by another subgraph. These subgraphs, which represent local
clusters or modules, are considered semiautonomous and therefore are of high biological
importance (Pelaez & Carthew, 2012). The top scoring mutually exclusive modules per
neoplastic disease were selected based on the criteria that they exhibited significant mutual
exclusivity and their constituent miRNAs were more highly connected to each other than
to other miRNAs in the entire graph.

Modules of miRNA interactions that displayed a statistically significant level of mutual
exclusivity were detected in seventeen neoplasms (Table 2). A single miRNA-miRNA pair
(i.e., hsa-miR-1296-3p and hsa-miR-6748-5p) was detected in bladder cancer, which was
excluded from the analysis. In the other twelve neoplasms under study, no distinguishable
modules could be detected. The seventeen modules were comprised of three to twenty-
three miRNAs (Table 2). Of note, only a few miRNAs were found in up to five cancer
modules (hsa-miR-4273, hsa-miR-4422, hsa-miR-4720-3p and hsa-miR-5002-3p); this is
because mutual exclusivity was a prerequisite. Among them were modules consisting of
a relatively large number of miRNAs, such as the esophageal (23), colorectal neoplasms
(20), and breast neoplasms (17), and also modules with a moderate number of component
miRNAs including the liver (8) and lung neoplasms (7). Cliques of only three miRNAs
were detected in the sarcoma and squamous cell carcinomas (Fig. 3). In addition, PubMed
(https://pubmed.ncbi.nlm.nih.gov/) was searched with each of the neoplasms and the core
miRNA components of the corresponding modules (Table 2). Nonetheless, in spite of
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extensive searches, any reported combinations of any two miRNAs that compose the
neoplasm-specific modules could not be detected (Table 2).

DISCUSSION
MicroRNAs constitute major components of the epigenetic regulome of diseases including
cancers. Previous studies have focused on the identification of disease-specific miRNA-
interaction signatures. Nalluri and colleagues (2017) introduced miRsig, a network
inference method for identifying preserved miRNA-miRNA interactions across different
types of cancers using miRNA expression profiles (Nalluri et al., 2017). In another study,
cancer-specific miRNAs were detected in miRNA target-deregulated networks built on
the differentially expression profiles of miRNAs and mRNAs (Xu et al., 2011). Song et
al. (2015) identified co-regulating miRNAs in lung cancer based on shared functionally
linked target genes. However, these studies have not taken into consideration the mutual
exclusivity relations between the neoplastic diseases under investigation.

In the present study, a priori miRNA-cancer relationships were collected from four
comprehensive databases which contain different categories of association data, i.e.,
differential expression profiles, circulating biomarkers, genome-wide association studies
(GWAS), knockdown studies, etc. This sort of ‘pluralistic’ data would enable the extraction
of the maximum amount of available cancer-associated miRNA information, in order to
predict and prioritize pairwisemiRNA interactions per neoplasm towards the identification
of distinct groups of miRNAs. The neoplasm terms were first homogenized, in order to
eliminate any duplicate entries. Then, miRNA connections were inferred by relying on the
shared functionality of their target genes. Based on the premise that miRNAs contribute
to the post -transcriptional gene regulation in a synergistic manner (Shi et al., 2013), by
co-ordinately regulating target genes, we generated miRNA-oriented networks of the
top-ranking miRNA pairs, and sought to discover modules of tightly connected miRNAs
per neoplasm.

Herein, mutual exclusivity was included as a prerequisite in order to detect sets of
densely connected miRNAs that could represent the signature component for a certain
type of cancer and not for another. This approach would be particularly useful for the
accurate detection of specific types of cancers. Likewise, in a prominent study by Ciriello
et al. (2012), mutual exclusivity analysis of diverse genomic alterations was performed in
order to identify oncogenic pathway modules.

The environmental context, that is, the connection patterns of the individual miRNAs,
is very important, since in different niches (e.g., normal versus diseased state) the same
miRNAmay behave differently, including its differential expression status and connections.
Therefore, both the miRNAs per se and the connection patterns among the component
miRNAs of a module should be taken into consideration when extracting miRNA
signatures. This is suggestive of the cooperativity between the respective miRNAs, so
as to exert their regulatory effect on their targets.

In this study, miRNA modules were identified in seventeen neoplastic disease groups,
composed of three to twenty-threemembers. The uniquemiRNAhsa-miR-3689cwas found
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Table 2 Mutually exclusive miRNAmodules per neoplasm.

Neoplasm miRNAmodules

Brain neoplasms hsa-miR-3689e, hsa-miR-4422, hsa-miR-4432, hsa-miR-
4720-3p, hsa-miR-5002-3p, hsa-miR-548ao-5p, hsa-miR-
5688, hsa-miR-6511b-5p, hsa-miR-6719-3p, hsa-miR-6753-
3p, hsa-miR-6811-5p, hsa-miR-7107-3p, hsa-miR-8062,
hsa-miR-8067, hsa-miR-8068

Breast neoplasms hsa-miR-1296-3p, hsa-miR-4273, hsa-miR-4422, hsa-miR-
4445-3p, hsa-miR-4694-3p, hsa-miR-4720-3p, hsa-miR-
5002-3p, hsa-miR-5011-3p, hsa-miR-548ae-5p, hsa-miR-
548al, hsa-miR-548ao-5p, hsa-miR-5699-5p, hsa-miR-
6724-5p, hsa-miR-6748-5p, hsa-miR-6753-3p, hsa-miR-
6773-5p, hsa-miR-7107-3p

Colorectal neoplasms hsa-miR-4273, hsa-miR-4293, hsa-miR-4422, hsa-miR-
4432, hsa-miR-4445-3p, hsa-miR-4694-3p, hsa-miR-4720-
3p, hsa-miR-5002-3p, hsa-miR-5011-3p, hsa-miR-548aj-5p,
hsa-miR-548al, hsa-miR-6511b-5p, hsa-miR-6724-5p, hsa-
miR-6753-3p, hsa-miR-6770-5p, hsa-miR-6773-5p, hsa-
miR-6811-5p, hsa-miR-7107-3p, hsa-miR-7154-5p, hsa-
miR-8068

Esophageal neoplasms hsa-miR-1296-3p, hsa-miR-3974, hsa-miR-4273, hsa-miR-
4445-3p, hsa-miR-4720-3p, hsa-miR-5002-3p, hsa-miR-
548aj-5p, hsa-miR-548al, hsa-miR-548ao-5p, hsa-miR-
5688, hsa-miR-5699-5p, hsa-miR-6511b-5p, hsa-miR-6719-
3p, hsa-miR-6724-5p, hsa-miR-6748-5p, hsa-miR-6770-
5p, hsa-miR-6773-5p, hsa-miR-6811-5p, hsa-miR-6828-3p,
hsa-miR-7154-5p, hsa-miR-7515, hsa-miR-8062, hsa-miR-
8067

Head and neck neoplasms hsa-miR-3974, hsa-miR-5011-3p, hsa-miR-5702, hsa-miR-
6828-3p

Kidney neoplasms hsa-miR-1296-3p, hsa-miR-3689e, hsa-miR-4422, hsa-miR-
5699-5p

Liver neoplasms hsa-miR-3689e, hsa-miR-6724-5p, hsa-miR-6773-5p, hsa-
miR-7154-5p, hsa-miR-7159-5p, hsa-miR-8062, hsa-miR-
8067, hsa-miR-8068

Lung neoplasms hsa-miR-4445-3p, hsa-miR-548al, hsa-miR-5688, hsa-miR-
5702, hsa-miR-6511b-5p, hsa-miR-6811-5p, hsa-miR-7515

Ovarian neoplasms hsa-miR-4273, hsa-miR-526a-5p, hsa-miR-6770-5p, hsa-
miR-7156-5p, hsa-miR-7515

Pancreatic neoplasms hsa-miR-3974, hsa-miR-4273, hsa-miR-4293, hsa-miR-
4694-3p, hsa-miR-522-5p, hsa-miR-523-5p, hsa-miR-5702,
hsa-miR-6770-5p, hsa-miR-6828-3p, hsa-miR-7156-5p,
hsa-miR-7159-5p, hsa-miR-7515

Prostatic neoplasms hsa-miR-1296-3p, hsa-miR-522-5p, hsa-miR-5699-5p, hsa-
miR-6748-5p

Sarcoma hsa-miR-5688, hsa-miR-7515, hsa-miR-8067

(continued on next page)
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Table 2 (continued)

Neoplasm miRNAmodules

Skin neoplasms hsa-miR-3689c, hsa-miR-3689e, hsa-miR-522-5p, hsa-miR-
548ae-5p, hsa-miR-548ao-5p, hsa-miR-5688, hsa-miR-
6753-3p, hsa-miR-6828-3p, hsa-miR-7107-3p, hsa-miR-
7154-5p, hsa-miR-8062, hsa-miR-8068

Squamous cell carcinomas hsa-miR-4293, hsa-miR-4694-3p, hsa-miR-548aj-5p
Stomach neoplasms hsa-miR-4720-3p, hsa-miR-5002-3p, hsa-miR-5699-5p,

hsa-miR-5702, hsa-miR-6719-3p, hsa-miR-6828-3p
Thyroid neoplasms hsa-miR-4293, hsa-miR-4422, hsa-miR-5011-3p, hsa-miR-

6753-3p, hsa-miR-7107-3p
Urinary bladder neoplasms hsa-miR-6719-3p, hsa-miR-6724-5p, hsa-miR-6773-5p,

hsa-miR-8067

Figure 3 Neoplasm-specific modules.Depiction of modules consisting of a (A) small (head and neck
neoplasms), (B) moderate (lung neoplasms), and (C) large number (breast neoplasms) of miRNAs. The
module miRNAs are shown in the upper layer, and their associations, both between them and with other
miRNAs in the neoplasm network, are displayed in the lower layer. Arena3D was used for visualization.

Full-size DOI: 10.7717/peerj.14149/fig-3

in the skin neoplasms module, and was also shown to be overexpressed in vulvar squamous
cell carcinoma (Yang & Wu, 2016). Moreover, another unique miRNA, miR-526a-5p,
was included in the module of ovarian neoplasms, and was found to be significantly
differentially expressed in ovarian cancer (Penyige et al., 2019) (Table 2). Of the signature
miRNAs (Table 2), hsa-miR-6770-5p, is suggested to have prognostic value in triple-
negative breast cancer (TNBC) (Wu, Ding & Lin, 2020), and hsa-miR-1296-3p was found
to be downregulated in prostate cancer (Majid et al., 2010). In addition, genetic variation in
the target site of miR-4273-5p (Table 2) was associated with colorectal cancer susceptibility
(Lee et al., 2016).

Of particular note, members of the let-7 (let-7a, 7b, 7c, 7d, 7e, 7f, 7g, 7i, miR-98,
and miR-202) (Ma et al., 2021; Mizuno, Kawada & Sakai, 2018), miR-10 (miR-10a/b,
miR-99a/b, miR-100 and miR-125) (Lund, 2010; Tehler, Hoyland-Kroghsbo & Lund, 2011),
miR-15 (miR-15a/b, miR-16-1, miR-16-2, miR-195, and miR-497) (Aqeilan, Calin &
Croce, 2010; Liu et al., 2019), miR-183 (miR-96, miR-182, and miR-183) (Dambal et al.,
2015; Ma et al., 2016; Pavlakis et al., 2017), miR-200 (miR-200a, 200b, 200c, miR-429, and
miR-141) (Cavallari et al., 2021; Chen & Zhang, 2017; Huang et al., 2019a), miR-221/222
(Garofalo et al., 2012; Song et al., 2019; Zhang et al., 2018), miR-23 (miR-23a, miR-27a, and
miR-24-2) (Chhabra, Dubey & Saini, 2010), miR-29 (miR-29a, 29b, 29c) (Jiang et al., 2014;
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Kwon et al., 2019; Yan et al., 2015), miR-30 (miR-30a, 30b, 30c, 30d, 30e) (Song et al.,
2020), miR-34 (miR-34a, 34b, 34c) (Agostini & Knight, 2014; Hermeking, 2010; Kalfert
et al., 2020; Zhang, Liao & Tang, 2019), miR-99 (miR-99a, 99b, and miR-100) (Eniafe &
Jiang, 2021) families, miR-17/92 (miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and
miR-92a-1) cluster or ‘oncomiR-1’ (Concepcion, Bonetti & Ventura, 2012; Mendell, 2008),
and miR-21 (Bautista-Sanchez et al., 2020; Jenike & Halushka, 2021; Wu, Li & Li, 2015),
which are well-documented to be associated with multiple types/subtypes of cancers, occur
with a high frequency across all neoplasms (Table S1 ). Of particular note, none of those
miRNAs were detected in any of the neoplasm-specific signature modules in Table 2. Due
to their omnipresence in the major neoplastic diseases, the above miRNAs cannot represent
signature components for specific types of cancers. Moreover, similar miRNA signatures
were not detected despite thorough literature searches, further highlighting the importance
of the findings of this study, as novel miRNA-miRNA interactions related to groups of
neoplastic diseases were discovered.

CONCLUSION
Taken together, in the present study, a novel computational pipeline is provided, which
could likely update and complement previous studies on cancer-relevant miRNAs. The
predicted miRNA-miRNA interactions found in the modules of the neoplastic diseases
could pave the way for the rational design of experimental studies directed towards the
elucidation of these novel pairings. These miRNA-interaction signatures unique to each
type of cancer could be possibly utilized in the clinical setting, along with the biomarkers
that are currently being applied, for enhancing diagnostic accuracy in differentiating
between cancer types; thereby, a panel of miRNAs could be used for the precise detection
of a particular neoplastic disease and not another. The overall methodology proposed in
this study could be also extrapolated to other datasets for the diagnosis and prognosis of
human diseases/disorders.
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