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ABSTRACT

Several classes of oxidatively generated DNA damage includ-
ing oxidized purine and pyrimidine bases, interstrand base
crosslinks and DNA-protein crosslinks have been previously
shown to be generated in both isolated DNA and cellular
DNA upon exposure to either 266-nm laser irradiation or
one-electron oxidants. In this study, we provide evidence that
biphotonic ionization of guanine bases by UVC laser irradia-
tion of double-stranded deoxyoligonucleotides in aerated
aqueous solutions induces the formation of interstrand cross-
links (ICLs). This is supported by various experiments
including sequencing gel analyses of formed photoproducts
and effects of UVC laser intensity on their formation. This
constitutes a novel example of the diversity of reactions of
guanine radical cation that can be generated by various one-
electron oxidants including UVC laser biphotonic ionization,
direct effect of ionization radiation and type I photosensitiz-
ers. However, the exact structure of the interstrand base
adducts that is a challenging analytical issue remains to be
further established. Examples of relevant biochemical/struc-
tural applications of biphotonic induction of ICLs in DNA
samples by high-intensity UVC laser pulses are provided.

INTRODUCTION
Cellular DNA is subject to a wide variety of endogenously and
environmentally induced modifications including base/sugar oxi-
dation, hydrolytic deamination and base release (1–4) together
with the formation of interstrand crosslinks (ICLs) and DNA-
protein adducts (5–9). ICLs that covalently link the two comple-
mentary DNA strands together constitute a serious problem to
the cell because they prevent DNA strand separation and thus
interfere with DNA transcription and replication. Several classes

of ICLs have been characterized in model studies and also
detected in the cells. For example, it has been shown that hydro-
xyl radical (•OH)-mediated oxidation of the 2-deoxyribose at
C4’ leads to the generation of a highly reactive a,ß-unsaturated
keto-aldehyde intermediate that efficiently covalently adds to
either cytosine (10) or adenine (11) on the opposite DNA strand.
The resulting slow forming ICLs that involve cytosine have been
detected in cellular DNA exposed to either gamma rays or
bleomycin (12). Also, C1’ abasic sites that are intermediates of
the base excision repair of oxidized and alkylated bases have
shown their ability to create ICLs (13). Furthermore, endogenous
oxidation of lipids produces unsaturated aldehydes such as
acrolein, crotonaldehyde or 4-hydroxynonenal that act as bifunc-
tional alkylating agents, thus crosslinking guanine residues in
DNA (14,15). Acetaldehyde and malonaldehyde, two endoge-
nously formed highly reactive aldehydes, are also efficient ICL
agents (7). In addition, several classes of chemical drugs includ-
ing nitrogen mustards, platinums and activatable mytomycins
also have the capability of generating deleterious ICLs (8).
UVA irradiation of DNA in the presence of intercalating bifunc-
tional psoralen derivatives including 8-methoxypsoralen, 5-
methoxypsoralen and 4,50,8-trimethylpsoralen (16–18) leads to
the formation of ICLs that present a real challenge for DNA
repair machinery (19). Poorly reactive octahedral Pt (IV) anti-
cancer complexes have also been shown to generate thymine-Pt-
guanine crosslinks upon blue light irradiation (20). Exposure of
DNA to high intensity 266-nm laser pulses triggers the forma-
tion of specific photolesions including predominant oxidized
bases (21,22) together with DNA-protein crosslinks (DPCs)
(23,24) and minor GT intrastrand lesions (25), as the result of
biphotonic ionization of the nucleobases. Interestingly, under
these conditions of irradiation, DNA ICLs are also formed with
an enhanced quantum yield by almost one order of magnitude
with respect to the conventional UVC lamp irradiation (for a
review, see (26)). This study focuses on the formation and par-
tial characterization of ICLs in aerated aqueous solutions of
DNA duplexes consisting of 20-mer deoxyoligonucleotides fol-
lowing exposure to high intensity 266-nm laser pulses.

*Corresponding authors email: dimitar.anguelov@ens-lyon.fr (Dimitar Angelov)
and Jean.Cadet@USherbrooke.ca (Jean Cadet)
†This article is part of a Special Issue celebrating the achievements of Prof. Jean
Cadet.
© 2021 American Society for Photobiology
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MATERIALS AND METHODS

Oligonucleotides. 20-mer duplex oligonucleotides A:
ACATTATACGAATATTTAGA and its complementary strand B:
TCTAAATATTCGTATAATGT, the mutated 20-mer A0 and B0 were the
30-side Gs were replaced by T and A, respectively (see Figure S1), and
junction oligonucleotides 1: TCACATACGCTTTGCTAGGACATC
TTGATATC; 2: TGATATCAAGATGTCCATCTGTCCGTTCATC; 3:
AGATGAACGGACAGATCATGGTGCTTTTAAAG; 4: TCTTTAAAA
GCACCATGTAGCAAAGCGTATGTG were purchased from Eurofins
and gel purified. Typically, 10 pmol of the selected oligonucleotide was
5’-end labeled by standard protocols using 20 lCi of [c-32P] ATP
(Amersham) in the presence of T4 polynucleotide kinase (New England
Biolab). The specific activity of the labeled probe was 2–3 9 106

cpm pmol�1. Duplex DNAs were assembled by mixing an equimolar
amount of the labeled and unlabeled strands in TE buffer containing
20 mM of NaCl, and after brief heating at 75°C, allowed to cool down
slowly to room temperature. Four-way junctions (4WJs) were assembled
as follows: 5 pmol of the [32P]-labeled oligonucleotide was mixed in
10 mM of Tris-HCl, pH 8.0, 1 mM of EDTA and 100 mM of NaCl with
10 pmol of the three remaining cold oligonucleotides in a final volume
of 50 lL. The mix was heated at 80°C for 3 min and left to cool down
slowly to room temperature. The formation of the duplex DNA and 4WJ
were tested by native PAGE.

Laser irradiation. The samples (usually 20 lL) were UV-irradiated in
siliconized 0.65-mL Eppendorf tubes with a single pulse (or multiple
pulses where indicated) provided from the fourth harmonic (k = 266 nm,
sp = 5 ns) of a Surelite II Nd:YAG laser (Continuum, Santa Clara, CA)
nanosecond Nd-YAG laser. The diameter of the laser beam was adjusted
to 2.8 mm to fit with the sample surface using a circular diaphragm. The
pulse energy of UVC radiation was measured with a calibrated
pyroelectrical detector (Ophir Optronics Ltd., Jerusalem, Israel) using an
8% deviation beam splitter. The maximum pulse irradiation dose (the
pulse energy divided by the beam surface) in usual single-pulse
experiments was below 0.15 J cm�2 in order to fulfill the “single hit”
experimental conditions. Variation of the laser energy was achieved by
varying the flash lamp voltage or tuning the angle of the 4th harmonic
generation crystal.

In temperature dependence experiments (Fig. 4), A/B*DNA samples
were irradiated at different temperatures, as indicated in Fig. 4, using a
homemade PC-automated Peltier-based device synchronized with the
laser source. Eppendorf tubes containing 20-µL samples were automati-
cally positioned on the axis of the laser beam (�50 microns precision)
by a stepper motor rotating mechanism and irradiated by a single
0.14 J cm�2 UV laser pulse after equilibration for one min at each tem-
perature. After irradiation was completed, the samples were lyophilized
and the content run on 15% sequencing PAGE.

Denaturing gel electrophoresis analysis. As illustrated in Fig. 2A,
after UVC laser irradiation, DNA samples were treated either chemically
with 1 M of piperidine for 30 min at 90°C or enzymatically with a mix
of 0.1 units of 6-dihydroxy-5N-formamidopyrimidine DNA glycosylase
(Fpg) and T4 endonuclease V (endo V) or with a 0.5 units of T4 DNA
polymerase possessing 30-50 exonuclease activity (from New England
Biolab). Lyophilized and treated samples together with nontreated control
were re-suspended in 4 µL of formamide loading buffer and run on a
15% acrylamide:bisacrylamide 19:1 gel containing 8 M of urea and
1xTBE buffer. For experiments reported in Fig. 1, low-resolution gels
l = 14 cm were used, while high-resolution (l = 40 cm) sequencing gels
were used in experiments reported in Figs. 3–5. The gels were dried and
exposed overnight on a Phosphor-Imager screen before scanning and
subsequent quantification by a Molecular Dynamics Phosphorimager. The
quantum efficiency (Q) of a lesion at an individual base (27) is defined
as Q = R/rER0, where R/R0 is the ratio between the amount of the
radioactivity (R) in the respective band and the total radioactivity (R0)
loaded within the lane, E is the dose of irradiation (expressed in photons
per square centimeter) and r is the absorption cross-section (r = 2.3
10�17 cm2) of DNA at 266 nm. R0 and R were determined by volume
integration using the Image Quant Software (Molecular Dynamics). The
typical reproducibility of Q determined from several independent
experiments was usually ~95%.

RuvA-4WJ-four-way junction experiments. Escherichia coli RuvA
(RuvAEcoli) and Mycobacterium leprae RuvA (RuvAMle) proteins), a
kind gift from Dr. Irina Tsaneva (University College London), were

expressed in the E. coli system and purified to homogeneity as described in
(28) and (29), respectively. Binding reactions with 30 fmol junction and
250 nM of RuvAEcoli and RuvAMle (sufficient to achieve full 4WJ
binding as probed by control EMSA) were carried out in 10 mM of Tris pH
7.4, 1 mM of EDTA, 1 mM of DTT, 5% glycerol, 50 µg ml�1 of BSA.
After irradiation with a single 0.15 J cm�2 pulse, DNA was extracted by
the phenol–chloroform procedure followed by ethanol precipitated and then
run on a 15% sequencing PAGE as described above.

RESULTS AND DISCUSSION

High-intensity UV laser photolysis induces formation of
interstrand DNA–DNA crosslinks at guanine residues

We have shown in early studies that guanines are the primary
target for one-electron oxidation of DNA in terms of final degra-
dation products, which is achieved by a high intensity 266-nm
UV laser pulse through a biphotonic ionization process (21,22).
This generates purine and pyrimidine nucleobase radical cations
with similar efficiency, which evolve by hole transport processes
dependent on the helicoidal base stacking and pairing (30,31).
Holes are preferentially trapped by guanines due to their lowest
oxidation potential among DNA bases (32). As shown from
detailed mechanistic studies, the main chemical reactions of the
DNA base radical cations in either aqueous solutions or cells
have been rationalized in terms of two main competitive path-
ways. Thus, hydration of predominant guanine radical cation
(Gua•+) gives rise to transient 8-hydoxy-7,8-dihydroguanyl radi-
cal (33,34) that is subsequently converted into 8-oxo-7,8-
dihydroguanine (8-oxoGua) and 2,4-diamino-4-hydroxy-5-
formamidopyrimidine (FapyGua) by one-electron oxidation and
one-electron reduction, respectively (35,36). Relatively minor
competitive deprotonation of Gua•+ generates the highly oxidiz-
ing oxyl-type radical ((Gua)-H•) in dynamic equilibrium with
several tautomers, that upon addition of the superoxide anion
radical (37) leads to the formation of 2,2,4-triamino-5(2H)-
oxazolone (Oz) (38), a piperidine labile compound (39,40) as
FapyGua, that is however more stable (41). In addition, several
relatively minor oxidation products of thymine, cytosine and ade-
nine are also formed due to hydration/deprotonation of related
radical cations (36).

Formation and chemical properties of ICLs formed in DNA
duplexes

Besides the formation of the major guanine lesions, we observed
in several experiments that laser irradiation of uniquely end-
labeled DNA fragments resulted in additional bands migrating
slower than the full-length labeled oligonucleotide during elec-
trophoresis. To study the origin of these bands, 20-bp DNA frag-
ments, uniquely 50-labeled at either the top (A*/B) or the bottom
(A/B*) strand, were submitted to a single dose of 0.14 J cm�2

or multiple laser pulses of different intensity, keeping the total
irradiation dose equal to 0.14 J cm�2 and run on a denaturing
urea-PAGE. Two strong retardation bands X1 and X2 are
observed together with some less intense discrete bands and a
smear (Fig. 1A), in addition to some nonspecific cleavage pre-
sent in the ladder sequence. The positions and the relative inten-
sities of the slower migrating bands are quite similar for each of
the end-labeled DNAs. Quantification of overall relative radioac-
tivity in the slow migration ladder, the full length and the fast
migrating ladder is 16%, 75% and 9%, respectively, for each
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labeled strand. Analysis of the single-strand breaks within the
fast migration ladder was already provided (22); here, we focus
on the nature of the retardation bands.

Upon decreasing the laser intensity, while keeping the total
irradiation dose constant by varying the number of pulses, the
yield of all observed lesions decreases, thus demonstrating their
biphotonic origin (Fig. 1B). However, a small fraction (10–15%)
of the fast migration X2 retardation band that is still present at
the lowest intensity has obviously a monophotonic origin. Inter-
estingly, these retardation bands are absent in nonannealed but
irradiated oligonucleotides A* and B* (Fig. 1B). This observa-
tion, together with the larger molecular weight of the slow-
migrating DNAs, clearly demonstrates that they are formed by
DNA interstrand adducts. Note that, in denaturing gels, the rate
of migration of linear oligonucleotide is determined primarily by
mass, while the migration of interstrand covalent adducts is
determined by DNA shape, which in turn is dictated by the loca-
tion of the crosslink. The presence of the two strong non-co-
migrating bands might be attributed to two specifically cross-
linked locations, while the weaker bands and the smear to a non-
specific random crosslinking.

To identify the bases involved in the specific DNA–DNA
crosslinking, one picomole (~2.106 cpm) of single-end labeled
DNA fragments were submitted to a 0.14 J cm�2 laser pulse,
lyophilized and run on denaturing PAGE. The bands correspond-
ing to the full length 20-mer oligonucleotide and the two retarda-
tion bands were excised from the gel, and eluted DNA fragments
were treated as indicated in Fig. 2, prior to sequencing PAGE
analysis (Fig. 3). Piperidine treatment was used to probe the for-
mation of oxazolone (Oz) and FapyGua, two of the main laser-
induced oxidatively generated DNA lesions; ICLs were also
shown to be piperidine-labile. The mix of Fpg glycosylase and
T4 endonuclease V (endo V) was used to probe 8-oxoGua, the
other main oxidation lesion, and also monophotonic cyclobutane
pyrimidine dimers (CPDs), respectively. The T4 DNA poly-
merase digestion was performed to probe all DNA lesions that
constitute full or partial stops for its 30 to 50 exonuclease activity,
essentially pyrimidine dimers and interstrand crosslinks.

The nontreated crosslinked X1 samples for both strands
(Fig. 3A,B lanes 3) shows a weak gel-condition lability at the
centrally located guanine liberating a free 30-OH termini

fragment, together with a slightly more stronger elimination of
the crosslinks releasing some small amount of full-length (FL)
oligonucleotides (Fig. 3A,B lanes 3,4).

Under the combined Fpg glycosylase and endo V treatment of
the gel purified irradiated A*-labeled species, the 8-oxoGua
bands at the central guanine and CPDs at the 30-side TTT run
present in the treated fraction of FL (lane 6A) disappear in X1
species (lane 7A), while their intensity is reduced by twice in the
X2 species (lane 8A) with respect to the FL oligonucleotide (lane
6A). These observations strongly suggest that slow migrating
adducts A*xB-X1 (lane 7A) involve central guanine(s), while
faster migrating adducts (lane 8A) involve oligonucleotide ends.
Note that 8-oxoGua related to the middle guanine in the bottom
strand labeled 20-mers A/B* is poorly generated (Fig. 3B lanes
6–8), thus precluding the possibility of similar analysis for this
strand to be performed.

Hot piperidine treatment (Fig. 3A,B, lanes 10–12) confirms
these suggestions and provides additional information on some
properties of the ICLs. Rapid inspection of the electrophoresis
patterns shows that crosslinked adducts are partially piperidine
labile resulting in central guanines (lane 11A,B) and full-length
cleavage fragments (lanes 11A,B and 12A,B). The central and
the 3’-proximal piperidine labile bands at guanines represent

Figure 1. High-intensity UV laser pulses induce interstrand DNA crosslinking by a biphotonic absorption mechanism. (A) Denaturing gel electrophore-
sis pattern of a single 266 nm laser pulse-irradiated 20-mer duplex with either top A*/B or bottom A/B* strand labeled. (B) The same DNA duplexes
were UV-irradiated with one or several pulses with a different laser fluence to the same total irradiation dose of 140 mJ cm�2.

Figure 2. Protocol used for mapping the UV laser-induced DNA lesions:
oxazolone (Oz) and crosslinks (piperidine); 8-oxoGua (Fpg glycosylase)
cyclobutane pyrimidine dimers (CPDs) (T4 endonuclease V); (CPDs,
crosslinks (T4 DNA polymerase)). The denaturing PAGE image shown
in the figure is the original preparative gel used for gel elution purifica-
tion of the different species as indicated by rectangles.
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most likely cleaved oxidized guanine bases (Oz, FapyGua) and
crosslinked residues. While the intensities of the central guanine
bands for the FL oligonucleotides (lane 10A,B) are similar with
the respective intensities for the X2 species (lanes 12A,B), the
intensities of the X1 species are considerably higher. This con-
firms the central guanine assignment of the slowly migrating
crosslinked species X1. At the same time, the equal intensity at
the 3’-proximal guanine bands in all 3 lanes 10A,B-12A,B sug-
gests that they belong solely to oxazolone (Oz) and FapyGua
lesions, and that this guanine precursor is not involved in
crosslinking. Otherwise, we would observe an enhancement of
the 30 piperidine-induced cleavage at this guanine in lanes 12A,B
if crosslinked. This raises the question whether end-positioned
crosslinks involve the 30-proximal guanines or originate from
specific border effects. To test this possibility, we performed the
same crosslinking experiments as in Fig. 1 but with 20 bp DNA
duplexes A0/B0, where the 30-proximal G/C base pairs in the
upper and lower strands were replaced by T/A and A/T, respec-
tively. Interestingly, this substitution of the two 30-proximal gua-
nines did not result in any qualitative and quantitative change of
the gel retardation crosslinking profiles that remained identical
with that in Fig. 1 (Figure S1). The persistent fast migration
band X2 in absence of the 30-proximal guanines provides evi-
dence that crosslinking at the DNA ends is a guanine-

independent border effect. Moreover, DNA extremities crosslink-
ing at DNA ends is occurring surprisingly under monophotonic
excitation too, but with a highly reduced efficiency (low laser
fluence, Fig. 1B). This is most likely a border effect arising from
particular properties of DNA edges at specific traps within the
charge/energy migration process (27), together with a favorable
conformation to crosslinking reactivity.

This localization of the laser DNA crosslinks is further con-
firmed by the electrophoretic profiles of T4 DNA polymerase 30-
50 exonuclease digestion profiles (Fig. 3A,B, lanes 14-17). Major
digestion stops are observed at middle guanines and DNA end
crosslinks together with stops at pyrimidine dimers, and the cor-
responding released 5’-labeled fragments migrate 1–2.5 nt slower
than the respective Maxam-Gilbert fragments (lanes 16A, B and
17A,B). Interestingly, while exonuclease digestion stops at
pyrimidine dimers known to be blocking lesions, the majority of
crosslinks are bypassed by the 30-50 exonuclease digestion,
releasing finally small undigested 5’-oligonucleotides migrating
at the bottom of the gel.

Mechanisms of UVC laser-induced formation of ICLs

First, it may be ruled out that the detected ICLs would result from
UV crosslinking of the complementary A/B strands as previously

Figure 3. DNA ICLs are located at guanines. Sequencing gel analysis of DNA–DNA crosslinks using gel purified species as illustrated in Fig. 2 and
treated as indicated. A*/B top strand labeled duplex (A). A/B*: bottom strand labeled duplex (B). A*xB (AxB*) top (bottom) crosslinked DNA–DNA
adducts. Lanes 3,7,16 correspond to the X1, lanes 4,8,17 to the X2 and lines 1,2,5,6,8,9 to the FL gel purified samples. Note that hot piperidine treat-
ment and Fpg protein-catalyzed excision reaction releases 32P-50-fragment with free 30-OH termini which migrate as Maxam–Gilbert fragments. In con-
trast, endo V and T4 DNA polymerase released 32P-50-fragments migrate 1 to 2.5 nucleotides slower.
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observed in sequences rich in (A + T) content (42,43). As dis-
cussed in the previous section, experimental evidence is provided
that guanines, essentially central guanine in X1 band, are mostly
involved in the high-intensity UVC laser-mediated formation of
ICLs in the 20-mer duplex oligonucleotides. The biphotonic char-
acteristic of interstrand DNA photoaddition is strongly suggestive
of the participation of the guanine radical cation (Gua•+) as the
highly reactive intermediate in the generation of ICLs. It may be
reminded that high intensity UVC nanosecond laser pulses are able
to photo-ionize the four main pyrimidine and purine bases of iso-
lated 20-deoxyribonucleosides in aqueous solutions. However, a
major redistribution of the base radical cations generated in either
isolated DNA duplexes (21,22) or cellular DNA (25,44,45) through
efficient charge transfer with preferential positive hole trapping by
the guanine bases has been demonstrated. This is confirmed in this
study by the predominant formation of piperidine-labile sites and
Fpg-sensitive sites at guanine bases. Furthermore, abundant infor-
mation is available on the reactivity of Gua• toward several nucle-
ophiles including hydroxide anion (33,34), N3 atom of thymine
(46,25), free amino group of polylysine (47–49) and polyamines
(50,51). The formation of ICL could be explained by the covalent
bond formation between Gua•+ and cytosine or guanine through 4-
and 2-amino group, respectively, on the opposite strand. However,
identification of the ICLs requires additional structural information
that may be gained from further experimental/theoretical studies.

Interstrand Crosslinks as biochemical probes of DNA
conformation

Interstrand DNA–DNA crosslinks: a tool for local denaturation
probing. Laser crosslinking at guanines can be used as a

photoactivation probe of the fluctuational opening of individual
GC base pairs and the structure of DNA itself, which are both
strongly temperature-dependent. When the molecule is heated up
to a sufficiently high temperature (70°C to 90°C, depending on
the sequence and the salt conditions), the DNA helix is thermally
denatured. The fluctuations are so large that they break all the
hydrogen bonds connecting the two strands, and the strands sep-
arate from each other. Since interstrand crosslinking is a function
of base pairing, we applied this approach aimed at providing a
measure of the temperature-induced local DNA closing probabil-
ity.

Duplex A/B* DNA aliquots were submitted to a single
0.14 J cm�2 laser pulse at different temperatures in 10 mM of
Tris, pH 7.6 at two different salt conditions as shown in
Fig. 4A,B). The upper panels of the figure represent the gel
images at 20 mM of NaCl (A) and at 20 mM of NaCl, 1.5 mM
of MgCl2 (B), respectively. The bottom panels show the quanti-
fied data in terms of quantum efficiency of crosslinking corre-
sponding to the two major retardation bands X1 and X2 plotted
versus the temperature (Fig. 2A,B lower panels).

As can be seen from the gel images (Fig. 4, top panels), the
crosslinking ladder decreases gradually as the temperature
increases. The decrease is more prompt after certain temperatures
and disappears completely at temperatures above 44°C (52°C, at
1.5 mM of MgCl2). The shape of the quantum efficiency versus
the temperature (Fig 4, bottom panels) is quite similar to that of
a classical UV absorption melting curve. Interestingly, the melt-
ing temperature Tm for the magnesium-free solution ~39°C coin-
cides with the one calculated by classic formulae value for
20 mM of NaCl and ~1 nM of DNA substrate (Fig. 4A). As
expected, the addition of 1.5 mM of MgCl2 leads to an important

Figure 4. Temperature melting profiles of the up-shifted ladder and full-length (FL) DNA of UV laser irradiated-20 mer A/B* duplexes at different salt
conditions: 20 mM of NaCl (A) and 20 mM of NaCl + 1.5 mM of MgCl2 (B). Upper panels—gel images, lower panels—quantified intensities for the cor-
responding middle-guanines crosslinks—X1 (black rectangles) and DNA borders crosslinks—X2.
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rise of Tm by ~7.0° (Fig. 4B). Importantly, Tm value at the mid-
dle guanine (X1) is ~1°C higher that Tm at the DNA extremities
(X2) (~0.5°C in the presence of 1.5 mM of MgCl2). This might
be an indication of a slightly delayed full strand separation rela-
tive to the DNA ends opening.

This experiment shows how interstrand DNA–DNA crosslink-
ing can be used as a direct sensor of local double helix melting
in short DNA fragments, providing information on the local fluc-
tuation opening of practically all GC base pairs in a single exper-
iment. This has already been exploited for probing the
temperature-dependent DNA "breathing" induced “denaturation
bubbles” formation in natural promoter "TATA-box" containing
DNA constructs with strongly "closed" extremities by multiple
GC runs (52). The experimental observations provided evidence

that DNA "breathing" is particularly strong in AT-rich regions
that exhibited premelting character starting at close to physiologi-
cal temperatures (52).

Suppression of the interstrand crosslinking at the crossover
region in 4WJ DNA-RuvA complexes. Four-way junctions (4WJ)
are crossover DNA intermediates that form in all organisms dur-
ing homologous recombination and double-strand breaks repair.
The successful completion of these processes requires resolution
of the crossover by specialized proteins such as RuvABC pro-
teins—a highly conserved and widely represented class of pro-
teins in prokaryotes, involved in the late stage of the E. coli
recombination process. The crystal structure of RuvA revealed
the molecular basis of binding to a synthetic Holliday junction

Figure 5. Sequencing PAGE analysis of the DNA–DNA crosslinking in uniquely 50-labeled 4WJ 1*–4*, free and RuvA complexed. (A) Slow migration
DNA ladder of a single 0.14 J cm�2 pulse irradiated free (lanes 2, 7, 12, 17) and RuvAEcoli (lanes 3, 8, 13, 18) and RuvAMle (lanes 4, 9, 14, 19) com-
plexed junctions labeled as indicated. Lanes 1, 6, 11, 16 correspond to nonirradiated controls and lanes 5, 10, 15, 20 to irradiated single-stranded
oligonucleotides 1*–4*. (B) Sequencing gel analysis after piperidine treatment of DNA–DNA crosslinks “a” and “b” and FL species isolated from the
gel in A (lanes 2, 7, 12, 17). (C) Schematics of the results of mapping the crosslinked base residues within the bands “a” and “b”, marked by red and
blue color, respectively. Upon RuvA binding, the inhibited crosslinking residues (band “a”) are in red and the nonmodified (band “b”) in blue.
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(53). In this complex, the junction was found to be sandwiched
between two tetramers of RuvA. Interactions with both faces of
DNA appeared to distort base-pairing in the arms, facilitating the
disruption of base stacking and pairing around the central point
of strand exchange. However, the crystal structure resolution was
insufficient to firmly establish whether local strand separation is
induced by the RuvA octamer directly or if its role is just to
destabilize the crossover region and transmit the ATPase activity
of the docked hexameric RuvB rings into DNA movement.

To probe the presence of eventual site-specific GC base pair
opening preventing the formation of ICS induced by RuvA bind-
ing, we compared the sequencing gel retardation profiles of a
single laser pulse irradiated free and RuvA complexed 4WJ
assembled with each one the 50-labeled strands 1*–4* (see the
schematics in Fig. 5C). Experiments were carried out with puri-
fied RuvA from E. coli and M. leprae as described in the experi-
mental section. As seen on Fig. 5A, the presence of bound
RuvA completely inhibits the crosslink formation corresponding
to the slowest migration bands "a," while all remaining faster
migrating up-shifted bands remains unaffected. This site-specific
total inhibition of the ICL formation at slow migrating band sug-
gests a localized base pair opening. The rule established in the
previous paragraph that “slower is the retardation band, closer to
the center is the position of the crosslinked guanine residue” sug-
gests that the footprinted guanines are the nearest to the 4WJ
center. To firmly identify the footprinted residues, we excised
the bands "a," "b" and FL from the gel lanes 2A, 7A, 12A, 17A
and the eluted and piperidine-treated species were analyzed by
sequencing gel (Fig. 5B). Interestingly, all the piperidine labile
DNA–DNA adducts analyzed belong to guanine bases, with the
exception of C1 (line 5B). Note that the cleavage bands in lanes
1B, 4B, 7B and 10B are guanines mass markers from the FL
fragments. Considering that the piperidine labile residues within
the bands "a" (Fig. 5B, lanes 2, 5, 8, 11, 12) belong to the "foot-
printed" bands and residues within the bands "b" (Fig. 5B, lanes
3, 6, 9, 13) belong to the nonmodified guanines, we can con-
clude that RuvA binding prevents crosslinking formation at GC
base pairs located in the vicinity of the 4WJ crossover. This
RuvA-induced site-specific transition to a stable noncrosslinkable
configuration strongly suggests occurrence of base pair opening
at the crossover region. This observation is consistent with
another crystal structure of a 4WJ-RuvA complex showing that
local unstacking of bases occurs only in the vicinity of the cen-
tral crossover point of the junction (54-55). Note that eventual
protein-DNA crosslinks and protein-mediated electron transfer
“repair” of the initial G radical cation could also partially con-
tribute to the observed interstrand crosslinking inhibition of cen-
tral guanines.

CONCLUSION
In this work, we report the occurrence of a new one-electron oxi-
dation DNA lesion: interstrand crosslinks, under high-intensity
single nanosecond UV laser pulse photolysis of short oligonu-
cleotide duplexes. Two groups of ICLs were observed: one
involving guanine residues independently of their location, and
another one at the DNA ends independently on the presence of
guanines at that position. These oxidatively generated DNA
lesions are partially sensitive to hot piperidine treatment, result-
ing in either elimination of the crosslinked guanine or homolytic

cleavage of the crosslink and release of the full-length oligonu-
cleotide. The occurrence of this modification is highly sensitive
to local DNA structural deformations. Examples are provided
demonstrating the use of ICLs at guanines as sensors of tempera-
ture or protein-binding-induced local GC base pair opening.
Laser-induced ICL formation was also used to probe in vitro the
TRF2-assisted strand invasion with telomeric DNA sequences
(56). Experiments on chemical structure determination of ICLs
by means of HPLC-MS/MS and MALDI-TOF are under way.
Finally, single-pulse crosslinking can be combined with either a
rapid temperature jump provided by a mid-infrared nanosecond
Er:YAG laser, or a stopped flow device to perform fast kinetic
local melting or strand invasion experiments with a single-base
resolution.
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Figure S1. Denaturing gel electrophoresis of mutated DNA duplexes lacking the 3’
guanines A’/B’ were submitted to one or several UV laser pulses with a different
laser fluence to the same total irradiation dose of 140 mJ/cm2 and the sequence of
the A’/B’mutated DNA dupexe used.
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