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Wnt/b-catenin Signaling in Central
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Abstract

The Wnt/β-catenin signaling pathway plays a
pivotal role in the development, maintenance,
and repair of the central nervous system (CNS).
This chapter explores the diverse functions of
Wnt/β-catenin signaling, from its critical
involvement in embryonic CNS development
to its reparative and plasticity-inducing roles in
response to CNS injury. We discuss how
Wnt/β-catenin signaling influences various
CNS cell types—astrocytes, microglia, neurons,
and oligodendrocytes—each contributing to
repair and plasticity after injury. The chapter
also addresses the pathway’s involvement in
CNS disorders such as Alzheimer’s and
Parkinson’s diseases, psychiatric disorders,
and traumatic brain injury (TBI), highlighting
potential Wnt-based therapeutic approaches.
Lastly, zebrafish are presented as a promising

model organism for studying CNS regeneration
and neurodegenerative diseases, offering
insights into future research and therapeutic
development.
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Dvl Dishevelled
Fzd Frizzled
GDNF Glial cell-derived neurotrophic factor
GFAP Glial fibrillary acidic protein
GSK-
3β

Glycogen synthase kinase-3β

Lrp5/6 Lipoprotein receptor-related protein
5/6

MS Multiple sclerosis
NSPCs Neural stem/progenitor cells
OL Oligodendrocyte
OLP Oligodendrocyte progenitor
OPC Oligodendrocyte progenitor cell
PD Parkinson’s disease
RG Radial glial
SCI Spinal cord injury
SGZ Subgranular zone
SOL Solifenacin
TBI Traumatic brain injury
Tcf/Lef T-cell factor/lymphoid enhancer

factor
TREM2 Triggering receptor expressed on

myeloid cells 2
VPA Valproic acid
Wif1 Wnt inhibitory factor 1
6-
OHDA

6-Hydroxydopamine

1 Introduction

The CNS is a highly complex and dynamic sys-
tem, responsible for regulating numerous physio-
logical processes and cognitive functions. One of
the key signaling pathways that govern CNS
development, maintenance, and response to injury
is the Wnt/β-catenin pathway. Wnt/β-catenin sig-
naling pathway is key to regulation of fundamen-
tal cellular processes, including embryonic
development, stem cell maintenance, tissue
homeostasis, and regeneration (Nusse 2008;
Ozhan and Weidinger 2014; Ozhan and
Weidinger 2015; Steinhart and Angers 2018;
Van Camp et al. 2014). During CNS development,
Wnt/β-catenin signaling plays a crucial role in the
proper formation of neural tissues, guiding the
patterning and growth of the brain and spinal cord.

As research has progressed, it has become evi-
dent that Wnt/β-catenin signaling also plays signif-
icant roles in the adult CNS, particularly in
response to injury and in the context of neurode-
generative diseases. The pathway’s ability to
promote cellular plasticity and repair mechanisms
makes it a promising target for therapeutic
interventions aimed at enhancing CNS regenera-
tion and mitigating the effects of disorders
such as Alzheimer’s and Parkinson’s diseases.
Dysregulations in Wnt/β-catenin signaling have
been linked to the pathogenesis of various
conditions, including congenital disorders, cancer,
and neurodegenerative diseases (Li et al. 2020a, b;
Azbazdar et al. 2021; Karabicici et al. 2021).

In this chapter, we will first explore the foun-
dational role of Wnt/β-catenin signaling in CNS
development, followed by an examination of its
involvement in various CNS cell types during
injury-induced repair and plasticity. We will
then discuss the pathway’s implications in CNS
disorders and potential Wnt-based therapeutic
strategies. Finally, we will highlight the use of
zebrafish as a model organism for studying CNS
regeneration and neurodegenerative diseases,
emphasizing its importance in advancing our
understanding and treatment of CNS injuries
and disorders.

2 Wnt/β-Catenin Signaling
Pathway

The discovery of the Wnt gene family dates back
to 1959, originating from investigations into the
oncogenic mechanisms associated with the
mouse mammary tumor virus, which led to the
discovery of the founding member, Int-1
(Callahan and Smith 2000). Five years later, the
identification of the ‘wingless’ gene in Drosoph-
ila revealed its homologous relationship with
Int-1 (Clevers 2006). Subsequently, in 1992,
Nusse and Varmus formally named this gene the
‘Wnt gene’ (Nusse and Varmus 1992).

Wnt signaling is divided into two main types.
The first is the canonical pathway, which is
dependent on β-catenin (Hayat et al. 2022). The
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second is the non-canonical pathway, which
operates independently of β-catenin. Wnt proteins
are classified based on their downstream signal-
ing effects. Canonical Wnt signaling involves
ligands such as Wnt1, 2, 3, 8a, 8b, 10a, and 10b,
while the non-canonical pathway involves Wnt
ligands like Wnt4, 5a, 5b, 6, 7a, 7b, and 11 (Qin
et al. 2024). In this chapter, we will focus on the
canonical (β-catenin-dependent) pathway.

In the canonical pathway, Wnt ligands bind to
a receptor complex formed by frizzled (Fzd)
receptor and lipoprotein receptor-related protein
5/6 (Lrp5/6), leading to the recruitment of the
scaffold protein Dishevelled (Dvl) (Azbazdar
et al. 2021). This recruitment inactivates the
destruction complex composed of the scaffold
protein Axin, the tumor suppressor adenomatous
polyposis coli (APC), casein kinase 1 (CK1), and
glycogen synthase kinase-3β (GSK-3β). Inactiva-
tion of this complex prevents the phosphorylation
and proteasomal degradation of β-catenin. As a
result, β-catenin accumulates in the cytoplasm
and eventually translocates into the nucleus,
where it binds to the T-cell factor/lymphoid
enhancer factor (Tcf/Lef) family of transcription
factors, stimulating the transcription of Wnt target
genes (Nusse and Clevers 2017). In the absence
of Wnt ligands, β-catenin is phosphorylated by
CK1 and GSK-3β, leading to its ubiquitination
and degradation, preventing its nuclear transloca-
tion and subsequent transcriptional activation.

3 Development of the Central
Nervous System
and Wnt/β-Catenin Signaling

The CNS is a complex structure composed of
neurons, astrocytes, oligodendrocytes, microglia,
and ependymal cells. CNS development follows
interconnected stages: (1) initiation of the
brain cell formation (proliferation/differentiation),
(2) relocation to appropriate positions (migration),
(3) growth of axons and dendrites essential for
intercellular connections (neurogenesis), (4) estab-
lishment of synaptic connections for communica-
tion (synaptogenesis), and (5) refinement of
these connections (maturation and pruning).

These processes are tightly regulated by a series
of signaling pathways and intercellular communi-
cation, orchestrated in a spatiotemporal manner
(Catala 2019; Stiles and Jernigan 2010). Among
these pathways, the Wnt/β-catenin signaling path-
way plays a pivotal role in regulating every phase
of CNS development. Its influence is evident from
the earliest stages of neurodevelopment and pat-
terning to later processes, such as corticogenesis,
axon growth and guidance, synaptic formation
and function, eye morphogenesis, and adult
neurogenesis (Arredondo et al. 2020; Bielen and
Houart 2014; Brafman and Willert 2017; Dickins
and Salinas 2013; Fortress and Frick 2016;
Fujimura 2016; Inestrosa and Varela-Nallar 2015;
Ji et al. 2019; Rosso and Inestrosa 2013; Salinas
2012; Stanganello et al. 2019).

Neurons and glia derive from a limited popula-
tion of multipotent stem cells, the so-called neural
stem/progenitor cells (NSPCs), which undergo
proliferation and subsequent differentiation to
establish specific cellular lineages. Defects in
NSPC proliferation or differentiation may lead
to abnormal cell numbers, CNS malformations,
and neurodevelopmental disorders (Ernst 2016;
Homem et al. 2015). Activation of the Wnt path-
way promotes the expansion of the NSPC pool
by stimulating their cell cycle progression and
inhibiting premature neuroglial differentiation dur-
ing development. Moreover, Wnt/β-catenin signal-
ing regulates the specification of distinct cellular
subtypes by controlling the expression of lineage-
specific transcription factors. For instance, N-myc
mediates Wnt signaling activation, promoting the
commitment to neuronal fate and proliferation of
neural precursor cells both in vitro and in vivo
(Kuwahara et al. 2010). Activation of Wnt signal-
ing and its downstream target N-myc increases the
production of basal progenitors in the neocortex,
while deletion of N-myc reduces basal progenitors
and neocortical neurons, highlighting its impor-
tance in neuron production during neocortical
development.

Another study explored the role of
Wnt/β-catenin signaling in vertebrate neural devel-
opment, focusing on the dopaminergic system
in zebrafish. The study revealed the expression
of Wnt ligands, receptors, and antagonists near
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developing dopaminergic neurons (Westphal et al.
2022). Although Wnt/β-catenin activity is absent
in these neurons, it is present in adjacent cells.
Manipulations of Wnt/β-catenin signaling affect
dopaminergic neuron development, with Wnt sig-
naling positively correlating with neuron number.
These findings suggest that Wnt/β-catenin signal-
ing promotes dopaminergic development by
influencing proliferative progenitors in the hypo-
thalamus, particularly regulating the size of DC5
and DC6 dopaminergic neuron groups.

A study investigated the effects of condition-
ally activating Wnt signaling in human glial
fibrillary acidic protein (hGFAP)-positive neural
precursors during postnatal cerebral and cerebel-
lar cortex development in mice. The researchers
observed an enlarged ventricular zone and
reduced cortical development due to continuous
proliferation and a failure in cell cycle exit during
prenatal stages (Pöschl et al. 2013). Aberrant
activation of β-catenin led to abnormal prolifera-
tion of granule neurons and disrupted Bergmann
glia development, which impaired normal granule
cell migration and cortical layering. Pöschl and
colleagues highlighted the divergent roles of
Wnt signaling in the CNS development, showing
how its effects are both cell-specific and time-
dependent.

Wnt/β-catenin signaling has also been shown
to play a significant role in oligodendrocyte
development and myelin formation in the CNS.
While the importance of this pathway was previ-
ously recognized, its precise role in oligodendro-
cyte specification and differentiation has been
debated. One study demonstrated that β-catenin
activation in neural progenitor cells inhibits
the generation of oligodendrocyte progenitors
(OLPs), but once OLPs are formed, β-catenin is
required for their differentiation (Dai et al. 2014).
Disruption of β-catenin signaling delayed oligo-
dendrocyte maturation, indicating that the
Wnt/β-catenin pathway regulates oligodendro-
cyte development in a stage-dependent manner.

Overall, the Wnt/β-catenin signaling pathway
plays a central role in CNS development by
orchestrating neural proliferation, differentiation,
and connectivity. A deeper understanding of
the intricacies of Wnt/β-catenin signaling could

enhance knowledge of neurodevelopmental
disorders and contribute to the development of
novel therapeutic strategies.

4 Wnt/β-Catenin Signaling
in Post-injury CNS Cells:
Mechanisms of Repair
and Plasticity

4.1 Astrocytes

Astrocytes, the most abundant glial cell popula-
tion in the CNS, were traditionally thought to
primarily provide structural support to neural tis-
sue (Siracusa et al. 2019). However, recent stud-
ies have revealed their involvement in a wide
array of functions beyond this role (Boghdadi
et al. 2020). Notably, astrocytes respond to injury
or disease by undergoing reactive gliosis, a
process characterized by cellular hypertrophy,
increased proliferation, and upregulation of
GFAP expression (Karve et al. 2016). During
reactive gliosis, astrocytes create a physical bar-
rier to limit CNS damage while secreting
cytokines that regulate inflammation and support
tissue repair (Liddelow and Barres 2017).

Astrocytes also play a key role in neuronal
restoration after CNS injury. Through the activa-
tion of β-catenin signaling, astrocytes facilitate
neurorestoration by regulating genes that enhance
cell survival and reduce oxidative stress. For
instance, following CNS damage, astrocytes
release Wnt1-like ligands that activate β-catenin
signaling, which is essential for promoting neuro-
nal recovery (L’Episcopo et al. 2011a, b). A study
involving ischemic stroke demonstrated that the
intranasal application of Wnt-3a significantly
reduced infarct volume, enhanced neurogenesis,
and improved sensorimotor functions in mice,
highlighting the role of Wnt/β-catenin signaling
in post-injury brain repair (Wei et al. 2018). This
process, often associated with reactive gliosis,
includes the expression of neurotrophic factors
such as brain-derived neurotrophic factor
(BDNF) and glial cell-derived neurotrophic factor
(GDNF), which promote neuronal survival and
regeneration (Chiareli et al. 2021).
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Moreover, Wnt/β-catenin signaling has been
shown to be essential for the polarization of reac-
tive astrocytes following spinal cord injury (SCI),
further supporting its importance in CNS repair
(Sonn et al. 2020). Astrocytes can promote
neuroprotection by stimulating the Wnt1-Fzd-1
receptor and β-catenin signaling pathway, partic-
ularly in the context of protecting dopaminergic
neurons (L’Episcopo et al. 2011a, b). However,
astrocytes can also contribute to negative
outcomes by producing Wnt inhibitors, which
may exacerbate inflammation and CNS injury

(Fig. 1). For example, excessive reactive gliosis
accompanied by high levels of reactive oxygen
species and reactive nitrogen species has been
linked to the inhibition of Wnt/β-catenin signal-
ing in the subventricular region of Parkinsonian
mice brain, reducing neurogenesis and impairing
NSPC function (L’Episcopo et al. 2012). The
activation of GSK-3β facilitates this inhibition,
leading to β-catenin degradation and diminished
neurogenic potential. These findings suggest that
abnormal reactive gliosis, in conjunction with
dysregulation of the Wnt/β-catenin signaling

Fig. 1 Effects of Wnt/β-catenin signaling inhibition on
various brain cell types. DKK1 inhibits Wnt signaling by
blocking its interaction with the Frizzled receptor and
LRP, leading to the phosphorylation and subsequent
ubiquitin-mediated proteolysis of β-catenin by the destruc-
tion complex (GSK-3β, APC, CK1α, and Axin). This
prevents gene transcription through TCF/LEF and results

in several downstream effects, including impaired reactive
gliosis in astrocytes, reduced neuroinflammation in
microglia, altered neuronal differentiation, and
compromised OPC activation and myelination in
oligodendrocytes. These alterations suggest a critical role
of Wnt signaling in maintaining brain cell function
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pathway, may be a primary cause of decreased
neurogenesis in aging (L’Episcopo et al. 2013;
Marchetti and Pluchino 2013).

In summary, astrocytes are key players in
linking the canonical Wnt signaling pathway to
CNS repair and maintenance. Although their role
in CNS development, function, and homeostasis
is evident, the precise mechanisms by which they
influence neuronal functions remain incompletely
understood. Further research is needed to fully
unravel the interaction between astrocytes, the
Wnt signaling pathway, and CNS health.

4.2 Microglia

Microglia, the specialized immune cells of the
CNS, play a crucial role in modulating inflamma-
tion and stimulating nerve regeneration. Recent
research has highlighted the significant role of the
Wnt signaling pathway in regulating microglial
functions. Microglial cells detect Wnt signaling
through receptors on their surface, and the activa-
tion of these receptors by Wnt ligands initiates
intracellular processes that dictate their responses.
Notably, activating the Wnt signaling pathway in
microglia has been directly linked to reduced
neuroinflammation and enhanced tissue repair
(Knotek et al. 2020) (Fig. 1).

A recent study demonstrated that Wnt-3a treat-
ment following SCI mitigated neuronal inflamma-
tion via the β-catenin signaling pathway, fostering
tissue repair and promoting the recovery of motor
function (Gao et al. 2024). Another investigation
revealed that Wnt1 plays a protective role against
infection-induced microglial polarization and
brain injury by activating the LKB1-AMPK path-
way (Gao et al. 2022). This activation suppresses
inflammation-mediated microglial activation,
promotes the conversion of microglia to an
M2-type phenotype, and alleviates inflammation-
related neonatal brain injuries.

Microglia express various immunological
receptors, enabling them to perform both protec-
tive and detrimental roles in neuronal survival.
One such receptor, triggering receptor expressed
on myeloid cells 2 (TREM2), is crucial for
microglial function and can activate the canonical

Wnt pathway by preventing β-catenin degrada-
tion (Mo et al. 2022). Genetic mutations in
TREM2 can disrupt Wnt/β-catenin signaling,
potentially leading to microglial overactivation
and neurodegeneration.

In the context of neurogenesis, microglia selec-
tively engulf specific synapses by detecting distinct
chemokine signals. For example, the interaction
between the CR3 receptor and CX3CL1
(fractalkine) on neurons stimulates microglial acti-
vation for phagocytosis (Cardona et al. 2006).
However, inhibiting the Wnt/β-catenin pathway
significantly reduces fractalkine expression,
resulting in synapse degeneration, thereby
establishing a direct connection between Wnt sig-
naling and synaptic modifications involving
microglia (Paolicelli et al. 2011).

While microglia are essential for CNS repair,
their actions can also have adverse effects. In
conditions such as ischemic stroke or SCI, the
increased presence of the C1q complement
amplifies microglial phagocytic activity, leading
to the engulfment of healthy synapses (Mercurio
et al. 2022). This excessive phagocytosis can
cause neuronal damage and eventual cell death.
Dying neurons can activate apoptotic signaling
pathways mediated by p53, which in turn stimu-
late the expression of Dickkopf1 (Dkk1), an
inhibitor of the Wnt/β-catenin signaling pathway
(Xiao et al. 2022). Additionally, the release of
harmful substances from dying synapses can
further escalate microglial chemokine release,
promoting an inflammatory response and
exacerbating synaptic damage.

Overall, while microglia are integral to CNS
repair processes, their activation and functions
must be tightly regulated to prevent adverse
outcomes in neurodegenerative conditions. Fur-
ther exploration of the Wnt signaling pathway’s
influence on microglial activity could provide
valuable insights into therapeutic strategies for
CNS injuries and disorders.

4.3 Neurons

New neurons are consistently produced in two
key areas of the adult brain: the subventricular
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zone near the lateral ventricles, and the
subgranular zone (SGZ) within the hippocampal
dentate gyrus. In the SGZ, radial NSPCs generate
granule cells, which are essential for hippocampal
plasticity. These newly formed neurons migrate
along the rostral migratory stream to differentiate
(Varela-Nallar and Inestrosa 2013). The Wnt
family of secreted glycoproteins plays a crucial
role in regulating various processes in both devel-
oping and mature brains, including neurogenesis
and neuronal maintenance and regeneration
(Marchetti and Pluchino 2013).

Wnt ligands are closely associated with neural
progenitor proliferation and differentiation, though
their effects in injured tissue environments are less
well understood. Astrocytes that secreteWnt3 have
been linked to neurogenesis, with Wnt signals
activating the Wnt/β-catenin pathway in neural
progenitor cells, promoting neuronal differentia-
tion (Varela-Nallar and Inestrosa 2013) (Fig. 1).
In TBI models, intranasal administration of
Wnt3a has been shown to increase levels of
β-catenin, GDNF, and vascular endothelial growth
factor (VEGF), enhancing neurogenesis and
neuroprotection by reducing autophagic and apo-
ptotic responses while promoting neurovascular
repair (Zhang et al. 2018). Similarly, in ischemic
stroke models, lentivirus-mediated Wnt3a expres-
sion in neural progenitor cells increased the prolif-
eration of immature neurons in the striatum and
subventricular zone, improving functional recov-
ery and neuronal survival (Shruster et al. 2012).

The role of the canonical Wnt pathway has
been explored in various disease and damage
models. In SCI, Rong et al. studied harpagide, a
traditional Chinese herbal medicine, and found it
enhanced β-catenin, c-myc, and cyclin D1 expres-
sion in spinal cord neurons, increased motor neu-
ron numbers, and improved functional recovery,
while inhibiting glial scar formation (Rong et al.
2019). Similarly, Gao et al. demonstrated that sim-
vastatin improved recovery in a rat SCI model by
activating the Wnt/β-catenin pathway, increasing
β-catenin levels and Wnt target genes LEF1 and
TCF1, effects that were reversed by β-catenin sup-
pression (Gao et al. 2016). Additionally, Xiang
et al. reported that resveratrol also enhanced recov-
ery after SCI through activation of Wnt/β-catenin

signaling (Xiang et al. 2021). In adult zebrafish,
Wnt/β-catenin signaling is elevated following SCI,
and overexpression of Dkk1b, which inhibits this
signaling pathway, hinders functional recovery
(Strand et al. 2016).

The optic nerve crush injury serves as a com-
mon experimental model for studying axonal dam-
age and the signaling pathways involved in CNS
axonal regeneration. In a retinal ganglion cell
(RGC) axon crush injury model using transgenic
Wnt reporter mice, intravitreal injections of Wnt3a
led to significant axonal regrowth beyond the
lesion site (Patel et al. 2017). Wnt3a stimulation
activatedWnt signaling and increased activation of
the transcription factor Stat3, promoting axonal
regeneration and RGC survival. However, condi-
tional Stat3 knock-out mice exhibited reduced
Wnt3a-mediated axonal regeneration and RGC
survival. Müller glia, which can dedifferentiate
and generate retinal cells in adult mammals, also
respond positively to Wnt3a treatment, promoting
their proliferation in models of photoreceptor dam-
age (Osakada et al. 2007). Injury triggers nuclear
accumulation of β-catenin, upregulating cyclin D1,
and increasing Wnt/β-catenin activity. Activating
Wnt signaling by inhibiting glycogen synthase
kinase-3β enhances retinal regeneration, while its
attenuation impedes the regeneration process.

Overall, these findings suggest that the Wnt
pathway is crucial in CNS damage and regenera-
tion, representing a promising avenue for promot-
ing CNS repair through the modulation of the
canonical Wnt pathway across various vertebrate
models.

4.4 Oligodendrocytes

Oligodendrocytes (OLs) are essential for
myelination in the CNS, facilitating rapid action
potential conduction and supporting homeostasis.
They differentiate from oligodendrocyte progeni-
tor cells (OPCs), which are widely distributed in
the adult brain and serve as a reservoir for OL
replacement and remyelination. Recent research
has highlighted the roles of OLs, OPCs, and mye-
lin structure in CNS injuries and neurodegenera-
tive diseases (Ettle et al. 2016).
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The Wnt/β-catenin signaling pathway plays a
crucial role in CNS regeneration, though its
effects on OL regeneration and remyelination
after CNS injury remain controversial (Xie et al.
2014). For instance, Wang et al. explored how
OPCs maintain blood-brain barrier (BBB) integ-
rity during ischemic stroke in mice (Wang et al.
2022). Their study found that OPC transplanta-
tion reduced edema and infarct volume, enhanc-
ing neurological recovery by activating the
Wnt/β-catenin pathway in endothelial cells. This
activation was essential for decreasing BBB leak-
age through the upregulation of specific proteins.
Conversely, inhibiting β-catenin negated these
positive outcomes, while application of Wnt7a
increased β-catenin and claudin-5 expression in
endothelial cells after oxygen-glucose deprivation
(Fig. 1). In another study, the conditional loss of
Wnt7a/b in OPCs led to decreased white matter
vascularity due to reduced angiogenesis and
endothelial cell proliferation following hypoxic
injury (Chavali et al. 2020). This diminished vas-
cular density correlated with impaired OL matu-
ration and hypomyelination.

In demyelinating diseases like multiple sclero-
sis (MS), both demyelination and OL injury occur.
While OPCs are present in affected areas, they
often fail to mature into OLs. Dysregulation of
canonical Wnt signaling can disrupt repair
mechanisms; for instance, Tcf4 expression in OL
lineage cells was found in demyelinating lesions,
indicating that the Wnt/β-catenin pathway nega-
tively regulates OL fate (Fancy et al. 2009). Addi-
tionally, Foxg1 knockout in a cuprizone-induced
demyelination model was shown to hinder OPC
proliferation but promote their differentiation into
mature OLs by regulating Wnt/β-catenin signaling
(Dong et al. 2021). This effect was linked to
increased GSK-3β levels in OPCs, which could
be reversed by inhibiting GSK-3β. Similarly,
solifenacin (SOL) was found to enhance OPC
differentiation and promote remyelination by
modulating Wnt/β-catenin signaling (Xu et al.
2024). SOL treatment decreases GSK-3β and
total β-catenin while increasing phospho–βcatenin,
indicating its role in remyelination.

The complexities of Wnt/β-catenin signaling
in CNS regeneration remain poorly understood.

While its role in promoting OL differentiation and
myelination is recognized, the mechanisms
involved in injury-induced regeneration warrant
further study. Notably, knocking out β-catenin-
dependent signaling in OPCs was shown to
reduce their proliferation, decrease microglial
infiltration, and increase astrocyte hypertrophy
in a spinal cord injury model, suggesting that
Wnt signaling is crucial for OPC activation and
glial scar formation (Rodriguez et al. 2014).

In conclusion, CNS injury presents significant
challenges to neuronal repair and recovery, with
OLs and myelin maintenance being vital for
effective regenerative responses. Targeting
Wnt/β-catenin signaling holds potential as a ther-
apeutic strategy to enhance regeneration and
improve outcomes following CNS injuries.

5 Wnt/β-Catenin Pathway in CNS
Disorders: Pathogenesis
and Therapeutic Potential

5.1 Alzheimer’s Disease

Alzheimer’s disease (AD) is a progressive neuro-
degenerative condition characterized by memory
loss, cognitive and behavioral impairments, and
diminished decision-making ability. Although the
pathophysiology of AD is not fully understood,
key features include the accumulation of amyloid
plaques, formation of neurofibrillary tangles, and
neuronal loss in brain tissue (Knopman et al.
2021). While there is no cure, various medications
and therapies can help manage symptoms and
slow disease progression.

Dysregulated Wnt/β-catenin signaling, mediated
by amyloid-beta (Aβ) and Dkk1, disrupts synaptic
integrity and contributes to cognitive decline in AD
(Karabicici et al. 2021). Elevated levels of Dkk1
have been observed in the brains of AD patients
and mouse models (Caricasole et al. 2004; Ren
et al. 2019; Rosi et al. 2010). In a transgenic
mouse model with inducible Dkk1 expression,
Dkk1 caused synapse and memory loss, while
reducing long-term potentiation in the striatum and
hippocampus, without affecting cell viability (Galli
et al. 2014). Similarly, postnatal deletion of the Wnt

D. Nazli et al.



and Dkk1 receptor Lrp6 from forebrain neurons in a
mouse AD model triggered amyloid precursor pro-
tein (APP) amyloidogenesis, leading to synaptic loss
and exacerbating AD pathology (Liu et al. 2014).
NeutralizingDkk1with antibodies or drugs has been
shown to completely counteract Aβ’s effects on
synapses (Purro et al. 2012; Sellers et al. 2018). In
addition, anti-sense oligonucleotides targeting
DKK1 reduced apoptosis in neurons with Aβ
accumulation and protected against tau
hyperphosphorylation. A molecule known as
IIIC3, which binds to Lrp6 and prevents Dkk1
from binding, has been shown to reactivate the
Wnt/β-catenin signaling pathway (Li et al. 2012).

Components of the Wnt pathway, including
β-catenin, Tcf4, Gsk3β, and Dvl1, are linked to
Aβ production from APP (Mudher et al. 2001;
Palomer et al. 2019; Parr et al. 2015; Tapia-Rojas
and Inestrosa 2018). Inhibition of Wnt signaling
can enhance Gsk3β activity, leading to Tau
hyperphosphorylation (Salcedo-Tello et al.
2014; Scali et al. 2006). Genes associated with
increased AD risk, such as APOE4, TREM2, and
Clusterin, also disrupt Wnt/β-catenin signaling
(Caruso et al. 2019; Killick et al. 2014; Zheng
et al. 2017). Moreover, patient brains exhibit
increased Gsk3β activity, Lrp6 polymorphisms,
reduced Wnt signaling, and lower cytoplasmic
β-catenin levels (Alarcón et al. 2013; De Ferrari
et al. 2007; Kawamura et al. 2001; Pei et al. 1999;
Zheng et al. 2017). Mass spectrometry further
confirms diminished canonical Wnt signaling in
brain samples from AD patients (Bai et al. 2020;
Elliott et al. 2018; Xu et al. 2019).

Given the significant suppression of the
Wnt/β-catenin pathway in the brains of
Alzheimer’s patients, reactivating this signaling
pathway has emerged as a crucial area for
research and potential treatment (Jia et al. 2019).
Reactivating Wnt signaling by inhibiting Dkk1
and Gsk3β or enhancing Wnt ligand levels has
been shown to mitigate Aβ-induced synaptic
damage in cell and mouse AD models (De Ferrari
et al. 2003; Alvarez et al. 2004; Quintanilla et al.
2005; Chacón et al. 2008; Cerpa et al. 2010;
Vargas et al. 2015; Licht-Murava et al. 2016;
Marzo et al. 2016; Ross et al. 2018). GSK3β
inhibitors, in particular, represent a promising

therapeutic approach for AD due to their role in
modulating Wnt/β-catenin signaling and their rel-
evance in AD pathology (Joshi and Reddy 2024).
Dual and multitarget inhibition of GSK-3β offers
broad-spectrum activity across various stages and
pathologies of AD, potentially influencing both
tau and neuroinflammation pathways.

In the context of mouse AD models, GSK-3β
inhibitors have been reported to improve
cognitive abilities. For example, compounds
such as NP12, AR-A014418, and Indirubin have
demonstrated efficacy in reducing memory
deficits, tau phosphorylation and amyloid accu-
mulation in transgenic mouse models (Ding et al.
2010; Ly et al. 2013; Serenó et al. 2009) (Fig. 2).
Additionally, L803-mts has shown improvements
in learning capabilities in 5XFAD mice
(Avrahami et al. 2013). Despite these promising
preclinical results, clinical findings in AD patients
have been somewhat disappointing (Godyń et al.
2016; Llorens-Martín et al. 2014). While thera-
peutic approaches targeting GSK-3β have shown
potential in correcting cognitive impairments in
mouse models, it is important to recognize that
these treatments may not fully resolve the condi-
tion and could potentially harm healthy cells due
to GSK-3β’s role in cell survival.

Amyloid plaques, a key feature of AD, disrupt
neuron communication and contribute to neuro-
nal death. These plaques form due to the aberrant
cleavage of APP by the β-amyloid precursor pro-
tein cleaving enzyme 1 (BACE1) (Vassar et al.
2009). Parr and colleagues demonstrated that fol-
lowing Wnt3a stimulation, TCF4 binds to the
same region on the BACE1 promoter, acting as a
transcriptional repressor of the BACE1 gene (Parr
et al. 2015). This study showed that increased
Wnt3a activation led to inhibition of BACE1
expression and a reduction in Aβ levels,
suggesting that Wnt/β-catenin stimulation can
suppress BACE1 transcription through TCF4
binding.

APOE4, a genetic risk factor for AD, inhibits
the Wnt co-receptor Lrp6, leading to decreased
expression of this receptor and increased amyloid
plaque production by APP, which is associated
with AD development (Liu et al. 2014). Prajapat
and colleagues found that the compounds LAS
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29757582, LAS 29984441, and LAS 29757942
block the interaction between Lrp6 and Dkk1
proteins, thereby increasing Lrp6 expression
and potentially reducing the risk of AD (Prajapat
et al. 2023). Additionally, compounds such as
curcumin and statins have been proposed as
potential activators of the Wnt/β-catenin
signaling pathway for AD treatment. Curcumin
is suggested to increase Wnt proteins and
agonists while reducing Dkk1 expression,
potentially offering benefits in AD management
(Farkhondeh et al. 2019; Sakr et al. 2023; Vargas
et al. 2015). Despite its limited bioavailability,
curcumin may still enhance neurogenesis and
mitigate cognitive impairments. Statins, primarily
used to reduce cholesterol production, have also
been recommended for AD protection due to their
ability to activate the Wnt/β-catenin signaling
pathway (Jia et al. 2019).

In summary, targeting the canonical Wnt path-
way presents a promising therapeutic approach for
AD.While currently FDA-approved acetylcholin-
esterase inhibitors such as tacrine, donepezil,
rivastigmine, and galantamine provide symptom-
atic relief, they do not offer a definitive solution.
Modulating the canonical Wnt pathway could
potentially halt disease progression, enhance
neuronal survival, and promote neurogenesis.

Therefore, further research and development in
this area are crucial for advancing AD treatment.

5.2 Parkinson’s Disease

Parkinson’s disease (PD) is a prevalent neurode-
generative condition characterized by the degen-
eration of dopaminergic neurons in the substantia
nigra region of the brain (Poewe et al. 2017).
This degeneration leads to the accumulation of
α-synuclein and the formation of Lewy bodies.
The decrease in dopamine (DA), the primary
neurotransmitter regulating motor activities,
results in uncontrolled motor functions including
tremors, muscle rigidity, impaired balance, and
reduced mobility. Currently, there is no definitive
cure for PD; however, symptomatic relief can
be achieved through dopamine replacement
therapies (Jankovic and Tan 2020).

The Wnt signaling pathway has emerged as a
promising therapeutic target for PD due to its signif-
icant role in the CNS. Research into activating
neuroprotection and neurogenesis through the Wnt
pathway is ongoing. Wnt1 and its agonists, which
act directly on the β-catenin pathway, have
demonstrated neuroprotective effects against
neuron-specific toxins such as 6-hydroxydopamine

Fig. 2 Therapeutic targeting of Wnt/β-catenin signaling
in Alzheimer’s disease, Parkinson’s disease, psychiatric
disorders, and traumatic brain injuries. Various
compounds and molecular targets modulate the inhibition

or activation of components within the Wnt/β-catenin sig-
naling pathway, offering potential therapeutic strategies
for neurodegenerative diseases, psychiatric disorders, and
traumatic brain injuries
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(6-OHDA) and MPTP, which induce parkinsonism
(L’Episcopo et al. 2011a, b; Wei et al. 2013).
Improvement in motor symptoms has been
observed in animal models treated with Wnt1 and
its agonists. Additionally, studies have explored the
reprogramming of pluripotent stem cells into dopa-
minergic neurons or progenitors in vitro using these
Wnt agonists (Serafino and Cozzolino 2023).

Research has also highlighted the role of the
atrial natriuretic peptide (ANP) in PD. ANP
activates Wnt signaling through modulation of
the Fzd-mediated pathway and has shown thera-
peutic potential (Serafino et al. 2020) (Fig. 2).
While ANP inhibits Wnt signaling in colorectal
cancer—where Wnt is continuously active—it
acts as a Wnt agonist in PD models. This dual
role underscores the complexity of Wnt signaling
modulation in different disease contexts. Further
investigations by Zhang et al. demonstrated
neuroprotective effects against rotenone-induced
neurotoxicity in PD model cells (PC12) through
Wnt signaling modulation via a GSK3β inhibitor
(Zhang et al. 2016). They used LiCl and
SB216763 as GSK3β inhibitors, which stabilized
β-catenin and induced Nurr1, a transcription fac-
tor essential for the maintenance of dopaminergic
neurons, thereby achieving neuroprotection
(Fig. 2). Additionally, certain pharmacological
agents, including specific statins and nicotinic
receptor modulators, have been found to activate
the Wnt/β-catenin signaling pathway, promoting
neuron survival and preservation (Marchetti
2018; Zhao et al. 2015; Zhou et al. 2016). These
findings, combined with ongoing research, high-
light the Wnt signaling pathway as an attractive
therapeutic target for neuronal rescue and protec-
tive effects for PD.

5.3 Traumatic Brain Injury

Traumatic brain injury (TBI) occurs when the
brain sustains damage due to rapid movement
within the skull, either from direct impact with
an object or exposure to a non-impact force, such
as a blast wave. The primary injury caused by
these external forces can lead to brain tissue dam-
age, hemorrhage, and axonal cutting, initiating a

cascade of neurometabolic and neurochemical
events, including oxidative stress, inflammation,
and disruption of the BBB (Ng and Lee 2019).
These processes not only alter the trajectory of
recovery but can also persist for months post-
trauma. Secondary injury in TBI is primarily
driven by neuroinflammation, characterized by
the release of cytokines and oxidative stress fol-
lowing the activation of microglia and astrocytes.
Suppressing this activation has emerged as a
crucial target improving TBI outcomes. Recent
studies highlight the significant regulatory role
of the canonical Wnt signaling pathway, which
has been shown to offer cerebrovascular and
neuroprotective benefits.

Abnormal activation of GSK-3β has been
implicated in exacerbating neuroinflammation,
contributing to neurodegeneration and chronic
inflammation in various TBI studies (Dash et al.
2011; Farr et al. 2019; Lv et al. 2014; Shaik et al.
2023). The beneficial effects of GSK-3β inhibitors
in TBI have been demonstrated; for instance, one
study showed that increased GSK-3β activity days
after TBI was inhibited by lithium chloride, lead-
ing to enhanced Wnt/β-catenin signaling (Leeds
et al. 2014) (Fig. 2). This treatment was associated
with reduced neuronal death and improved
cognitive function. In rodent models of TBI,
researchers observed rapid but transient increase
in LRP6 phosphorylation, accompanied by a
slight decrease in β-catenin phosphorylation
(Dash et al. 2011). By the third day post-injury,
levels of phospho-GSK-3β had significantly ele-
vated, prompting the administration of lithium to
counteract this increase. These findings suggest
that selective GSK-3 inhibition might partially
restore cognitive function, while lithium treatment
could provide neuroprotection and substantial
cognitive improvement.

Further supporting the potential of Wnt signal-
ing in TBI recovery, studies have shown that
activating this pathway may enhance regeneration
in neural tissues. For instance, in a Wnt reporter
mouse model, increased Wnt signaling in Müller
cells after laser-induced TBI led to their prolifer-
ation and dedifferentiation, suggesting that Wnt
activation may promote neural regeneration (Liu
et al. 2013). In another study, neural stem cells
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overexpressing Wnt3a were transplanted into rats
with optic nerve crush injuries, resulting in the
activation of the Wnt signaling pathway, which
triggered proliferation and differentiation (Yang
et al. 2014) (Fig. 2). Additionally, treatment with
hydrogen sulfide in TBI-modeled mice was pro-
posed as a potential therapeutic strategy, as it
activated the Wnt signaling pathway, inhibited
ferroptosis, and reduced neuronal loss (Chen
et al. 2023).

Other studies have explored additional
therapeutic approaches targeting the Wnt path-
way. For example, methane saline has
demonstrated promising therapeutic potential in
TBI by activating the Wnt signaling pathway,
leading to anti-inflammatory, anti-apoptotic, and
antioxidative effects (Li et al. 2020a, b). Another
study highlighted the neuroprotective effects of
licoricidin in mice with TBI, suggesting its effi-
cacy through the modulation of oxidative stress
and apoptosis via the FoxO3/Wnt/β-catenin path-
way (Liu et al. 2020).

TBI can lead to serious lifelong consequences.
While traditional treatments generally focus on
managing symptoms, targeting the Wnt signaling
pathway offers a promising strategy for poten-
tially achieving more complete recovery. How-
ever, despite the significant potential of these
approaches, further clinical studies are necessary
to establish their efficacy and safety.

5.4 Psychiatric Disorders

The Wnt/β-catenin signaling pathway plays a sig-
nificant role in the pathophysiology of several
psychiatric disorders, including schizophrenia
and autism spectrum disorder (ASD). Schizophre-
nia, a profound neurodevelopmental condition, is
characterized by disrupted cognitive functions,
interpersonal conduct, and affective responses,
arising from a complex interplay of genetic
predispositions and environmental influences.
Post-mortem histopathological evaluations have
revealed reduced neuron size within the hippocam-
pal subfields of individuals with schizophrenia
(Hussaini et al. 2014).

Precise regulation of Wnt1 is crucial for healthy
brain development and homeostasis. Post-mortem
studies indicate an accumulation of Wnt1 in hip-
pocampal neurons of schizophrenia patients,
suggesting that alterations in the Wnt pathway
may contribute to impaired neuroplasticity
associated with the disorder (Miyaoka et al.
1999). Additionally, analyses of post-mortem tis-
sue from patients have shown decreased GSK-3β
levels in the prefrontal cortex, while levels of
β-catenin and Dvl-2 remained unchanged (Beasley
et al. 2001). This finding suggests that
dysregulation of Wnt/β-catenin pathway in spe-
cific neuronal populations may contribute to the
etiology of schizophrenia. The disorder has also
been associated with abnormal Wnt-related gene
expression, particularly increased levels of FZD7
and NFATc3, alongside lower plasma levels of
soluble dickkopf 1 and sclerostin (Hoseth et al.
2018). A study using patient-derived human
induced pluripotent stem cells revealed increased
β-catenin levels and elevated Wnt activity,
underscoring the involvement of Wnt/β-catenin
signaling in schizophrenia (Topol et al. 2015).
More recently, RNA-seq analysis of neural pro-
genitor cells derived from patients and controls
identified differentially expressed genes, with a
significant overrepresentation of cadherin and
Wnt-related genes, particularly those involved in
Wnt5a-related signaling (Evgrafov et al. 2020).

The disrupted-in-schizophrenia-1 (DISC1)
protein, which regulates the fate of OPCs, has
been implicated in schizophrenia. A significant
variant, DISC1-Δ3, characterized by the absence
of exon 3, has been identified in individuals with
schizophrenia. This variant is associated with
excessive branching of OPCs, stemming from
aberrant OPC activity driven by hyperactivation
of the Wnt/β-catenin pathway (Yu et al. 2022).
Although this hyperactivation does not affect
myelination, it leads to the upregulation of Wnt
inhibitory factor 1 (Wif1), resulting in irregular
synaptic formation and neuronal activity. Impor-
tantly, this phenotype can be rescued with Wif1
inhibition (Fig. 2). Together, these findings sug-
gest a potential role for the Wnt pathway in the
pathophysiology of schizophrenia and suggest
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that therapeutic strategies targeting this pathway
might be beneficial.

ASD is a multifactorial disorder associated with
neurodevelopmental impairment, characterized by
deficits in social interaction and communication,
alongside patterns of repetitive behavior and nar-
row interests. The biological etiology of ASD is
complex, involving various genetic factors and
both prenatal and postnatal environmental
influences (Kumar et al. 2019; Kwan et al. 2016).
Prenatal exposure to valproic acid (VPA) is a well-
establishedmethod for inducing autism-like behav-
ior in rodents. High-resolution mass spectrometry-
based quantitative proteomic analysis has revealed
that differentially expressed proteins in
VPA-exposed models significantly overlap with
ASD risk genes (Park et al. 2023). This study
identified a significant enrichment in the
Wnt/β-catenin pathway, driven by the upregulation
of Rnf146. Overexpression of Rnf146 impaired
social behavior in adult mice and increased excit-
atory synaptic transmission in prefrontal cortex
neurons. Moreover, dysregulated genetic networks
involving the PI3K-AKT, RAS-ERK, and
Wnt/β-catenin signaling pathways have been
identified in leukocyte transcriptomic data from
toddlers aged 1–4 years with ASD (Gazestani
et al. 2019). There is a notable correlation between
the severity of network dysregulation and the extent
of socialization deficits observed in these toddlers.
These findings highlight the intricate molecular
mechanisms underlying ASD, suggesting that
dysregulation in Wnt/β-catenin signaling may con-
tribute to the neurodevelopmental impairments and
social deficits characteristic of the disorder.

6 Zebrafish as a Model Organism
for CNS Regeneration
and Neurodegenerative
Disease Research

Zebrafish (Danio rerio) have emerged as a vital
model organism for studying central nervous sys-
tem (CNS) regeneration and neurodegenerative
diseases due to their remarkable ability to regen-
erate lost tissue functions in critical organs,
including the brain and spinal cord (Beffagna

2019; Fleisch et al. 2011; Gemberling et al.
2013). Given the increasing prevalence of neuro-
degenerative diseases and brain injuries, zebrafish
offer an invaluable platform for targeted thera-
peutic research. A key advantage of using
zebrafish is their optical transparency throughout
development, which enables high-resolution,
live, in vivo imaging of the entire CNS, surpass-
ing conventional methods in clarity and detail.
This transparency facilitates the observation of
transgene expression levels, particularly when
using the UAS/Gal4 system, and allows for the
assessment of neuronal health following induced
mutations (Kawakami et al. 2016).

Zebrafish have successfully modeled various
human brain pathologies, including neurological,
developmental, psychotic, and neurodegenerative
diseases. They are widely employed in behavioral
tests and drug development for CNS disorders,
contributing to a deeper understanding of evolu-
tionarily conserved CNS mechanisms (Azbazdar
et al. 2023; Kalueff et al. 2014). A significant
factor in their regenerative capability is the use
of radial glial (RG) cells in neurogenesis, which
possess stem cell potential. Unlike mammals,
where RG cells are replaced by astrocytes during
embryogenesis, these cells remain active through-
out the zebrafish CNS, including the retina and
cerebellum. In zebrafish, the neurogenic functions
of RG cells are regulated by the Wnt/β-catenin
signaling pathway, a mechanism also observed in
mammalian astrocytes (Demirci et al. 2020). This
pathway facilitates the production of GFAP,
TGF-β, FGF, GLT-1, and AQP4, mirroring the
functions of mammalian astrocytes (Alunni and
Bally-Cuif 2016; Lyons and Talbot 2014).

The zebrafish CNS contains continuously active
neurogenic regions, and many genes associated
with human neurodegenerative diseases have
homologs in zebrafish, underscoring their signifi-
cance as a model organism. While similar neuro-
genic traits exist in mammals, they are far less
abundant (Chapouton et al. 2007; Diotel et al.
2015). Following CNS injury, zebrafish activate
various mechanisms that promote neurogenesis
and the activation of neuronal progenitors.
Notably, zebrafish can resolve glial scars and
inflammation, promoting the prolonged survival
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of neurons—an ability largely absent in mammals
(Demirci et al. 2020; Di Giaimo et al. 2018;
Kroehne et al. 2011). Remarkably, zebrafish can
restore damaged neurons andmotor neuron activity
within 4–8 weeks after SCI (Becker et al. 2004;
Reimer et al. 2008). One study observed the activa-
tion of a restoration mechanism within just 30 min
after a single motor neuron was damaged in larval
zebrafish (Morsch et al. 2015).

Zebrafish also offer distinct advantages for
stem cell therapeutic research in SCI models.
Unlike traditional models, which often require
immunosuppressive approaches to prevent
immune rejection, zebrafish do not face this
issue. The zebrafish model allows for direct
screening of transplanted cells, providing insights
into underlying mechanisms that are difficult to
achieve with other models (Tayanloo-Beik et al.
2021).

In the context of neurodegenerative diseases
such as Alzheimer’s and Parkinson’s, which
cause severe brain damage and impaired
neurogenesis in humans and mammals, zebrafish
exhibit a notable ability to renew neurons during
neurodegeneration (Wirths 2017). For instance, in
an AD model created through Aβ1–42 peptide
microinjections, zebrafish have been observed to
regenerate neurons by activating the IL-4/STAT6
pathway, which triggers the proliferation of
NSPCs (Bhattarai et al. 2016; Saleem and Kannan
2018). This NSPC plasticity is unique to zebrafish,
as mammals do not respond to AD in this manner.
In zebrafish AD models, the NGFRA/NFkB path-
way is activated, facilitating RG proliferation and
differentiation (Bhattarai et al. 2020). Zebrafish
are also employed to study mechanisms underly-
ing neurodevelopmental disorders and epilepsy
(Kobylarek et al. 2019; Zabegalov et al. 2019).
For instance, a study on epileptic zebrafish
revealed disrupted glutamate turnover in RG
cells, resulting in excessive extracellular gluta-
mate levels during seizures (Diaz Verdugo et al.
2019).

Overall, zebrafish provide a powerful and ver-
satile model for studying CNS regeneration, neu-
rodegenerative diseases, and other neurological

disorders. Their unique regenerative capabilities,
coupled with their genetic and physiological
similarities to humans, make them an indispens-
able tool in the quest for novel therapeutic
approaches.

7 Conclusion

The Wnt/β-catenin signaling pathway is integral
to both the development and repair of the CNS.
Its influence across various CNS cell types
highlights its versatility and importance in
maintaining neural function and integrity. As
discussed, this pathway is not only crucial during
early CNS development but also plays a signifi-
cant role in the adult CNS, particularly in
response to injury and neurodegeneration.

Understanding the complexities of
Wnt/β-catenin signaling in the CNS opens new
avenues for therapeutic intervention, particularly
for neurodegenerative diseases and brain injuries.
By harnessing the pathway’s potential to promote
repair and plasticity, we can develop novel
strategies to enhance CNS regeneration and
improve outcomes for individuals with CNS
disorders. The use of model organisms, such as
zebrafish, will be essential in these efforts,
providing valuable insights into the mechanisms
of CNS repair and the development of effective
therapies.
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