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Summary

The surface of mammalian bodies is colonized by a multitude of micro-

bial organisms, which under normal conditions support the host and are

considered beneficial commensals. This requires, however, that the com-

position of the commensal microbiota is tightly controlled and regulated.

The host immune system plays an important role in the maintenance of

this microbiota composition. Here we focus on the contribution of one

particular immune cell type, invariant Natural Killer T (iNKT) cells, in

this process. The iNKT cells are a unique subset of T cells characterized

by two main features. First, they express an invariant T-cell receptor that

recognizes glycolipid antigens presented by CD1d, a non-polymorphic

major histocompatibility complex class I-like molecule. Second, iNKT cells

develop as effector/memory cells and swiftly exert effector functions, like

cytokine production and cytotoxicity, after activation. We outline the

influence that the mucosal microbiota can have on iNKT cells, and how

iNKT cells contribute to the maintenance of the microbiota composition.
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Introduction

The bodies of animals are exposed to the environment on

the skin and the mucosal surfaces, which have to recon-

cile two often conflicting aims: to support the exchange

of the host with the environment and to protect the host

from pathogenic colonization and invasion. Whereas the

skin can afford a thick, multilayered barrier, the func-

tional characteristics of the mucosal surfaces, mainly the

airways, and the gastrointestinal and urogenital tracts,

require at times a single-cell layer of separation between

the host and the environment. These surfaces are colo-

nized by a diverse mixture of microbial organisms, con-

sisting of bacteria, fungi and viruses. Each of the mucosal

surfaces hosts a unique microbiome, often with additional

niches depending on the particularities of the location.

Importantly, the interaction between the host and the

microbiota has coevolved in such a manner that it is,

under normal conditions, mutually beneficial, and the

commensal microbiota contributes to the health of the

host, not only at the mucosa, but also systemically. Fur-

thermore, the composition of the commensal microbiota

is not random, but is maintained by a complex, location-

specific and bi-directional communication between the

host and its commensals.1–3 The immune system aims to

protect the host against pathogens, and therefore, it is

not surprising that it plays an important role in main-

taining the truce with the commensal microbiota (Box 1).

To this end, the mucosal immune system, composed of

cells of haematopoietic origin, interacts closely with vari-

ous tissue-resident cell types, such as epithelial cells,

microfold cells, and Paneth cells (Box 1).

Invariant Natural Killer T (iNKT) cells are a unique

subset of T lymphocytes that phenotypically and func-

tionally resemble Natural Killer cells as well as memory T

cells.4–9 They are characterized by the expression of a

canonical Va14 to Ja18 T-cell receptor (TCR) rearrange-

ment (Va14i) in mice and an orthologous Va24-Ja18
TCR chain (Va24i) in humans. iNKT cells recognize gly-

colipids, especially glycosphingolipid structures, presented

by CD1d, a non-polymorphic homologue of the major

histocompatibility complex class I antigen-presenting

molecules. The first and best-studied TCR agonist for

mouse and human iNKT cells is a-galactosylceramide

Abbreviations: GF, germ-free; HDE, house dust extracts; IEL, intraepithelial lymphocyte; iNKT cells, invariant Natural Killer T
cells; RF, restricted flora; TCR, T-cell receptor; aGalCer, a-galactosyl-ceramide

ª 2018 John Wiley & Sons Ltd, Immunology, 155, 164–175164

IMMUNOLOGY REV I EW ART ICLE

http://orcid.org/0000-0002-0055-9926
http://orcid.org/0000-0002-0055-9926
http://orcid.org/0000-0002-0055-9926
http://orcid.org/0000-0002-7115-298X
http://orcid.org/0000-0002-7115-298X
http://orcid.org/0000-0002-7115-298X


Box 1 Means of interaction between the immune system and the commensal microbiota

The commensal microbiota influences the health of the host in many ways, and the host actively shapes the composition of the commensal

microbiota. This mutual interaction relies on various means of communication and influence. We outline here shortly those means pertaining

the immune system and give examples for invariant Natural Killer T (iNKT) cells were possible.

(A) Means of the microbiota to influence the host immune system:

Three main ways have been described by which the commensal microbiota impacts the host immune system.

(1) Antigens

Microbially derived molecules are detected by the adaptive immune system when they can act as antigens by binding either to the B-cell

receptor (BCR) of B cells (direct binding) or the T-cell receptor (TCR) of T cells (after processing by antigen-presenting cells (APCs) and pre-

sentation on major histocompatibility complex type molecules). This is the most direct way by which the microbiota can activate the adaptive

immune system. The organisms known to carry specific antigens for iNKT cell are discussed in the text and in Table 1. As iNKT cells have

some degree of auto-reactivity,121 there exists another antigen-dependent method for iNKT cell activation. The microbially derived signal

might alter the expression of self-antigens presented by CD1d on APCs97,98 or change the expression levels of CD1d itself.97,122

(2) PAMPs

Microbially derived molecules are sensed similar to pathogen-associated molecular patterns (PAMPs) by the innate immune system through

pattern-recognition receptors (PRRs). For example, the polysaccharide A from Bacteroides fragilis and the exopolysaccharide from Bifidobac-

terium longum both can expand regulatory T (Treg) cells in vivo by inducing interleukin-10 (IL-10) production in APCs.123,124 In some cases,

receptors for IgA can facilitate the uptake of bacteria.125 Cytokines produced by PAMP-activated APCs can also stimulate cytokine production

by iNKT cells (see text and Figure 1).

(3) Metabolites

Microbially derived molecules that influence metabolic and immunological processes in the host. Short-chain fatty acids (SCFAs), like acetate,

propionate, butyrate; biogenic amines, like taurine and histamine; tryptophan catabolites, are all known to modulate metabolic processes in

APCs and thereby the host immune response.123,124 However, we are not aware of data that link these metabolites to iNKT cells.

(B) Means of the host immune system to influence the microbiota

The host immune system can impact the composition of the commensal microbiota in several ways:

(1) Anti-microbial peptides

Many anti-microbial peptides are produced directly by immune cells or are induced by them in, for example, epithelial cells via messenger

molecules like cytokines. With regard to iNKT cells, it was shown that iNKT cells, via the production of interferon-c, can regulate the pro-

duction of anti-microbial peptides by Paneth cells.68

(2) Secretory IgA molecules

The majority of the antibodies produced in mammals are of the secretory IgA (sIgA) type that are transported across the endothelial and

epithelial barriers of the mucosal surfaces. For example, around three-quarters of the commensal bacteria in the mouse gastrointestinal tract

are coated with sIgA, which is essential for the maintenance of the bacterial homeostasis in the intestine.125 CD1d-deficient mice show

changes in their IgA-repertoire compared with wild-type mice, but it was suggested that this is not due to a direct interaction with iNKT

cells, but rather a consequence of the altered microbial flora in the CD1d�/� mice.46 However, it was reported that human iNKT cells could

stimulate IgA and IgG secretion by B cells in vitro even in the absence of exogenous iNKT cell antigens.126

(3) Mucus production and glycosylation

The glycosylation of the epithelial cells and the production of mucus by goblet cells and enterocytes are important physical defence mecha-

nisms of the mucosal surfaces.127,128 For example, the glycosylation of intestinal epithelial cells can be regulated by dendritic cells and innate

lymphoid cells (ILC3s). With regard to iNKT cells, it was suggested that iNKT cell-derived interleukin-13 (IL-13) regulates goblet cell home-

ostasis.129

(4) CD1d-retrograte signalling

Interaction of the invariant T-cell receptor (iTCR) of iNKT cells with CD1d not only can activate iNKT cells but can also influence the

CD1d-expressing cells due to CD1d-retrograde signalling. This has been reported for APC (leading to IL-12 production);130,131 epithelial cells

(either IL-12 and IL-15,94 or IL-10132,133); cancer cell lines (IL-12);134 and ILC3s (IL-22).135 In the context of the mucosa, pro-inflammatory

responses, IL-22 by ILC3s,135 and anti-inflammatory responses, IL-10 by intestinal epithelial cells,132,133 have been reported for such CD1d-

retrograte signalling.
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(aGalCer), a bacteria-derived glycolipid chemical opti-

mized to yield its exceptionally strong agonistic potential.

The iNKT cells develop as effector/memory cells and, fol-

lowing TCR stimulation, they rapidly produce copious

amounts of various cytokines and display strong cytotoxi-

city.10 Due to their cytokine production iNKT cells can

impact a wide variety of different chronic and acute

immune processes, ranging from responses to pathogens

and tumours, to autoimmune responses.

Furthermore, iNKT cells are heterogeneous and based

on significant biases in cytokine production and the

expression of particular transcription factors, several sub-

sets have been described. Some, like NKT1,11 NKT2,11

NKT1012,13 and NKT1714–18 cells, develop in the thymus,

while others, such as NKTFH
19,20 and FoxP3+ iNKT21 cells

seem to arise or, like NKT10 cells,12,22,23 greatly expand

after immunization. For some of these subsets a preferen-

tial distribution to various organs has been described.12,24

The TCR-mediated activation of iNKT cells is called the

direct or antigen-dependent activation.4–9 Similar to mem-

ory T cells, iNKT cells can also be activated in a TCR-

independent manner by cytokines alone. This indirect or

antigen-independent activation can be induced by several

pro-inflammatory cytokines alone or in combination. For

some cytokine combinations a preferential activation of a

particular iNKT cell subset has been suggested (Fig. 1).

However, the direct and indirect activation pathways are

not exclusive as cytokines can augment CD1d-dependent

activation too. This synergistic pathway for iNKT cell acti-

vation seems particularly critical for stimulation with weak
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Figure 1. The route of invariant Natural Killer T (iNKT) cell activation impacts their effector function. For iNKT cells in unchallenged control

mice, i.e. thymus-derived iNKT cells, three routes of activation have been described. (a) In the direct or antigen-dependent activation, a strong

antigen, usually of foreign origin, binds to CD1d and activates iNKT cells via their semi-invariant T-cell receptor (TCR). aGalCer is depicted as

an example. This direct activation leads to the production of both T helper type 1 (Th1) cytokines, like interferon-c (IFN-c) and tumour necrosis

factor, and Th2 cytokines, like interleukin-4 (IL-4) and IL-13, by the iNKT cells, which is sometimes referred to as a Th0 response. (b) The indi-

rect or antigen-independent activation does not require an engagement of TCR, but rather is achieved by the exposure of the iNKT cells to sev-

eral pro-inflammatory cytokines alone or in combination. Some cytokines could induce a preferential production of particular cytokines by the

iNKT cells, leading to a Th1-bias (more IFN-c and/or less IL-4), Th2-bias (more IL-4, IL-13 and/or less IFN-c), or Th17-bias (more IL-17A).

The available data indicate a preferential activation of NKT17 cells in the case of the Th17-bias. However, in the case of the Th1- and Th2-biases

it seems more likely that it is the result of a modulation of the iNKT cell cytokine response. (c) In the synergistic pathway the stimulation of

iNKT cells depends both on the TCR and on cytokine receptors. In these cases, the stimulation provided by a weak antigen (signal 1) and sub-

optimal cytokine concentrations (signal 3), which are both too weak on their own to drive iNKT cell activation, can act together to achieve the

stimulation of the iNKT cells. The antigens bound to CD1d could be of self or foreign origin. In the direct and synergistic pathways, the signal

can also be amplified by the up-regulation of the expression levels of CD1d97,122 and/or self-antigens.97,98 Additionally, signal two, i.e. co-stimula-

tion/inhibition, can modulate iNKT cell responses.25
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antigens, which, importantly, can be either exogenous

(foreign) or host-derived (self) antigens. Furthermore, sur-

face co-stimulatory and co-inhibitory molecules have been

suggested to modulate iNKT cell responses.25

As iNKT cells are positioned in peripheral tissues and

display effector functions rapidly after activation, they are

part of the first line of defence of the immune system

and therefore play an important role at the mucosal sur-

faces as well. In this review we will outline our current

knowledge on the interplay between iNKT cells and the

mucosal microbiota, with a special emphasis on the respi-

ratory and gastrointestinal tracts (Fig. 2).

iNKT cells and the microbiota in the
gastrointestinal tract

The gastrointestinal tract, reaching from the mouth to

the rectum, is usually divided into the upper
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Figure 2. Graphic summary of the functions of invariant Natural Killer T (iNKT) cells at mucosal surfaces: (a) iNKT cells at mucosal surfaces

can respond to many signals. Bacterium-, fungus-, and food-derived products can influence the tissue-resident cells of the mucosa and the local

immune cells, via antigens, pathogen-associated molecular patterns (PAMPs), and metabolites (Box 1). These can alter the frequency and func-

tion of various cells (not depicted). Antigens for iNKT cells can be either self-antigens or antigens derived from the microbiota (Table 1). Some

of the bacterially derived glycolipids binding to CD1d can also be inactive, competitive inhibitors. Furthermore, iNKT can respond to local

cytokines either directly or synergistically with CD1d-bound antigens. (b) Invariant NKT cells are known to influence the mucosal microenviron-

ment and the microbial composition via (1) cytokines that they produce and (2) direct cell–cell contact. (1) Invariant NKT cell derived inter-

feron-c (IFN-c) or interleukin-13 (IL-13) has been shown to activate Paneth cells or goblet cells to increase production of anti-microbial peptides

(AMPs) or mucus, respectively. Furthermore, iNKT cells have been shown to boost IgA and IgG production by B cells. Finally, CD1d�/� mice

had a lower frequency of CD304+ regulatory T (Treg) cells in the mesenteric lymph nodes and iNKT cell-derived IL-4 was implicated.46 (2) Bind-

ing of iNKT cells to CD1d can induce, via a CD1d-retrograde signal, IL-10 or IL-22 production by epithelial cells or innate lymphoid cells

(ILC3s), respectively, which both support mucosal integrity. Please note that the figure does not attempt to represent a particular mucosal sur-

face, but summarizes available data derived from various tissues and sides. For additional references we refer to the main text and Box 1. AMPs,

anti-microbial peptides; ECs, epithelial cells.
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gastrointestinal tract (pharynx, oesophagus, stomach), the

small intestine (duodenum, jejunum, ileum), and the

large intestine (caecum, colon, rectum). Its main function

is to extract and absorb nutrients from the food via its

large surface of approximately 200 m2, made up largely

of small intestinal villi and microvilli. This digestive pro-

cess is supported by the commensal microbiota of the

intestine. The gastrointestinal tract harbours diverse sets

of bacteria, fungi, Archaea, and viruses with varying den-

sities, although the vast majority of the microbiome are

bacteria. Firmicutes, Bacteroidetes, Actinobacteria and Pro-

teobacteria are the dominant bacterial phyla in the human

intestine, with estimates suggesting over 1000 distinct

species.26 The bacterial density increases along the gas-

trointestinal tract, spanning from 103 to 104 bacteria/ml

at the beginning of the small intestine up to 1011 bacte-

ria/ml in the colon.27 Besides digestion, the composition

of the gut microbiota can influence many aspects of

human health, including neural, gastrointestinal, meta-

bolic and skeletal systems, as well as the immune sys-

tem.1–3 Holding such large numbers of bacteria, separated

from the body by only one cell layer, at bay requires sev-

eral defence mechanisms, with the immune system in a

prominent position. The closest are the intraepithelial

lymphocytes (IELs), which are sited between the mucosal

epithelial cells. There are approximately 10–15 IELs for

Table 1. Mucosal commensals and pathogens with known invariant Natural Killer T (iNKT) cell antigens

Organism Phylum Pathogenicity Antigen References

Bacteria

Mycobacterium tuberculosis Actinobacteria Pathogen Phosphatidylinositol mannoside

(PIM)

78

Saccharopolyspora Actinobacteria Environmental, opportunistic

pathogen

M-AcM-MAG 63

Rothia dentocariosa Actinobacteria Commensal, opportunistic

pathogen

M-AcM-MAG 63

Arthrobacter Actinobacteria Commensal, opportunistic

pathogen

M-AcM-MAG 63

Bacteroides fragilis Bacteriodetes Commensal, opportunistic

pathogen

aGalCer(Bf) 59

Prevotella copri Bacteroidetes Commensal aGalCer (~ 100 9 lower

concentration than B. fragilis)

61

Bacteroides vulgatus Bacteriodetes Commensal, opportunistic

pathogen

aGalCer (~ 100 9 lower

concentration than B. fragilis)

61

Streptococcus pneumoniae and Group B

streptococcus

Firmicutes Commensal, opportunistic

pathogens

SPN-Glc-DAG

SPN-Gal-Glc-DAG

62

Lactobacillus casei Firmicutes Commensal Glc-DAG 62

Sphingomonas paucimobilis Proteobacteria Commensal, opportunistic

pathogen

a-glucuronosyl ceramide (GSL-1/

aGlcUCer)

50,51

Sphingomonas yanoikuyae Proteobacteria Environmental, commensal,

opportunistic pathogen

a-galacturonosyl-ceramides 50

Ehrlichia muris Proteobacteria Pathogen in rodents, but not

in humans

Antigen not defined 49

Helicobacter pylori Proteobacteria Commensal, opportunistic

pathogen

Cholestoryl-a-glucosides, especially
monoacyl a-CPG

30,56

Sphingomonas wittichii Proteobacteria No pathogenicity reported a-galacturonosyl-ceramides 52

Borrelia burgdorferi Spirochaetae Pathogen BbGL-II (1,2-di-O-acyl- 3-O-a-D-
galactopyranosyl-sn-glycerol, 6)

52

Fungi

Aspergillus fumigatus and Aspergillus niger

(latter with lower antigenic content)

Ascomycota Opportunistic pathogen Asperamide B 136

Candida albicans Ascomycota Commensal, opportunistic

pathogen

ChAcMan 63

Protozoa

Entamoeba histolytica Amoebozoa Opportunistic pathogen

(often asymptomatic)

lipopeptidophosphoglycan

(EhLPPG)

137

Leishmania donovani Euglenozoa Opportunistic pathogen

(often asymptomatic)

Lipophosphoglycan (LPG) 138
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every 100 epithelial cells in the small intestine with fewer

cells in the large intestine.28 Over 90% of these IELs are

T cells with the large majority expressing CD8a. Further-
more, basically all IEL T cells express an effector/memory

phenotype, bear a TCR with limited diversity, and many

have unusual developmental requirements unique to this

location.28 In contrast, the lamina propria lymphocytes,

which are scattered throughout the lamina propria under-

neath the epithelial layer, are more diverse in their cellu-

lar composition and resemble more those of other

lymphatic organs.29

iNKT cells can be detected in the mouse intestine at

frequencies only slightly lower than in other peripheral

organs, like the spleen and lymph nodes (stomach,30

small intestine,31–33 large intestine33–37). Approximately

65% (BALB/c mice) to 85% (C57BL/6 mice) of intestinal

iNKT cells are NKT1 cells, with the rest largely being

NKT2 cells, and no differences in this distribution were

noted for IELs versus lamina propria lymphocytes.24 The

distribution of intestinal iNKT cells correlated indirectly

with the bacterial density, i.e. more iNKT cells in the

small intestine than the large intestine, and the proximity

of the bacteria, i.e. more iNKT cells in the lamina propria

lymphocytes than in the IELs.33 Invariant NKT cells can

also be found in the human intestine, however, less is

known about their distribution.38–40

Although iNKT cells do not require the commensal

microbiota to develop an activated/memory phenotype

and the ability to produce cytokines,33,35,41–43 the micro-

biota nonetheless impacts their functionality. Indeed,

iNKT cells from germ-free mice (GF) differed in their

TCR Vb7 frequency and expressed lower levels of activa-

tion markers33 compared with the control specific patho-

gen-free mice. Furthermore, these iNKT cells were hypo-

responsive and performed weaker effector functions (cy-

tokine production, cytotoxicity) after antigenic stimula-

tion.33 Reconstitution of the GF animals with bacteria

that contain iNKT cell antigens (Sphingobium yanoi-

kuyae), but not with antigen-negative bacteria (Escherichia

coli), could fully establish phenotypic and functional

maturity of the iNKT cells.33 Interestingly, the microbiota

affected the distribution of iNKT cells as well. Whereas

the frequency of iNKT cells in GF animals was lower in

spleen and liver,35,42 it was increased in the small and

large intestines33 and the colon.35,37 This distribution was

established within the first 5 weeks of life, as reconstitu-

tion of the GF mice with a normal microbiota at a later

time did not change the frequency of iNKT cells.35

Importantly, the increased frequency of iNKT cells in the

intestine of GF mice has also functional consequences for

intestinal immune responses. Oxazolone-induced colitis is

a mouse model of ulcerative colitis in which iNKT cells

are known to be pathogenic.44 As a result of the higher

numbers of effector iNKT cells in the mucosa at the onset

of the disease, these GF animals were also more sensitive

to oxazolone-induced colitis.35 CXCL16 production by

epithelial cells was implicated in the recruitment of iNKT

cells to the intestine;35 however, as the authors themselves

published conflicting data,37 the role of CXCL16 appears

unclear. Data similar to the GF mice were obtained with

mice with a highly restricted intestinal flora (RF mice),

which is devoid of Sphingobium but enriched for Firmi-

cutes.42 The frequency of iNKT cells in RF mice was

reduced in the spleen and liver, they displayed an altered

TCR Vb7 frequency, lower expression of activation mark-

ers, and produced smaller amounts of cytokines following

activation with aGalCer.33,42 Moreover, in the RF mice

the intra-gastric administration of S. yanoikuyae bacteria

increased the frequency of spleen and liver iNKT cells

and their expression of activation markers within a day.42

The data in the GF and RF animals demonstrate that it is

not the microbiota per se that affects iNKT cells, but the

composition of the microbiota and the presence of partic-

ular iNKT cell antigens. When we compared control

specific pathogen-free mice obtained from different ven-

dors, which are known to differ in their gut flora,45 we

again noticed differences in the frequency, Vb7-usage,
and tumour necrosis factor production of iNKT cells.33

These differences were abolished by co-housing the off-

spring, which served to equalize the microbial flora.33

Several lines of data support the idea that specific iNKT

cell antigens can be provided by the intestinal microbiota.

First, the effects observed in the GF animals were inde-

pendent of interleukin-12 or MyD88.33,35 Second, using

Nur77 expression as an indication for TCR-mediated acti-

vation, a CD1d-dependent stimulation of iNKT cells in

the intestine was shown in the presence of the intestinal

microbiota.46 Third, intra-gastric administration of GF

mice with a mixture of heat-killed bacteria leads to the

expression of CD1d–antigen complexes, detected with the

antibody clone L363,47 on liver dendritic cells.48 Finally,

and most directly, iNKT cell antigens have been discov-

ered in several bacteria present in the intestinal micro-

biota.

Besides the above mentioned a-Proteobacteria Sphingo-

bium yanoikuyae,49,50 iNKT cell antigens have been

described in the closely related Sphingomonas paucimo-

bilis,49–51 Sphingomonas wittichii,52 Sphingomonas capsu-

lata,49 Novosphingobium aromaticivorans,53 and Ehrichia

muris.49 The Proteobacterium Heliobacter pylori is a com-

mon colonizer of the stomach, present in about half of

the world population,54 that can cause gastric ulcers.

About 25% of H. pylori’s lipids are cholesteryl a-gluco-
sides55 that contain several related antigens for iNKT

cells.30,56 The intestinal microbiota in humans and mice

is dominated by members of the phyla Firmicutes and

Bacteriodetes (human,57 mouse58). For one common

member of these phyla, Bacteroides fragilis, an a-galacto-
sylceramide antigen (a-GalCer(Bf)) reminiscent of aGal-
Cer has been described that could stimulate human and
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mouse iNKT cells.59 Surprisingly, a subsequent study

described a B. fragilis-derived a-galactosylceramide (GSL-

Bf717) that could bind CD1d but was not stimulatory.37

This suggests that some commensal-derived glycolipids

can act as competitive inhibitors for other stimulatory

iNKT cell antigens. Another example for this was the

inhibition of aGalCer-induced iNKT cell activation

in vitro by a lipid extract of Bifidobacterium infantis.60 In

addition to B. fragilis, Prevotella copri and Bacteriodes vul-

gatus, two other commensals belonging to the Bacteriode-

tes phylum, express iNKT cell antigens, although at

approximately 100-fold lower concentrations than B. frag-

ilis.61 Within the Firmicutes phylum so far only the com-

mensal strain Lactobacillus casei has been described to

express an iNKT cell antigen.62 Furthermore, a few other

reports reported iNKT cell antigens from commensal bac-

teria, without clearly defining the source48 or the exact

structure of the antigen (e.g. B. infantis60). Besides bacte-

ria, an iNKT cell antigen (ChAcMan) has been reported

for the fungus Candida albicans, a gut commensal and

opportunistic pathogen.63 Finally, iNKT cell antigens have

been described for several mucosal pathogens (Table 1).

In summary, in the last decade iNKT cell antigens were

discovered in many bacteria, fungi and protozoa, indicat-

ing that such antigens are widely distributed in the envi-

ronment.64

Given the impact of the intestinal microbiota on iNKT

cells it might not be too surprising that the elimination

of the gut flora with antibiotics likewise influences iNKT

cell responses. After 2 weeks of antibiotic treatment, the

frequency of iNKT cells increased in the colon of wild-

type C57BL/6 mice.65 Interestingly, this increase disap-

peared within 1–2 weeks following the bacterial reconsti-

tution.65 Changes were also noted beyond the intestine.

For example, the iNKT cell frequency in liver increased

following antibiotic-mediated commensal depletion.66

Furthermore, for several models the changes observed

after the depletion of the commensal microbiota by

antibiotics were dependent on iNKT cells: a delayed liver

regeneration after partial hepatectomy,66 an amelioration

of experimental autoimmune encephalomyelitis,67 but

also an augmented concanavalin A-induced liver injury.48

Importantly, the interaction between the commensal

microbiota and iNKT cells is mutual, as iNKT cells can

influence the composition of the intestinal microflora.

CD1d-deficient mice were found to host an altered gut

microbiota,46,68,69 which was pro-inflammatory upon

transfer into wild-type animals.69 Furthermore, CD1d-

deficient mice were more susceptible to intestinal colo-

nization by pathogenic bacteria as well.68 Whereas in con-

trol mice the intestinal bacteria were largely separated

from the intestinal epithelial cells by a mucus layer, this

layer was impaired in the CD1d-deficient animals, leading

to a direct contact of the bacteria and the epithelial

cells.46 The impact of iNKT cells on the intestinal

microbiota was stronger in the small than the large intes-

tine,46,69 in line with the higher frequency of iNKT cells

in the small intestine.33 This might also explain why an

analysis of faeces from CD1d-deficient pigs did not reveal

any differences in the bacterial composition.70 The

changes in the intestinal microbiota seen in the CD1d-

deficient animals could be replicated in mice where CD1d

was selectively missing on CD11c+ cells.46 In contrast, in

mice with a CD11c-specific deletion of CD1d, the separa-

tion between the intestinal bacteria and the epithelial cells

was intact, as in the control animals.46 This demonstrates

that iNKT cells influence the intestinal microbiota in at

least two independent ways involving CD11c+ cells, pre-

sumably dendritic cells, and other CD1d+ cells in the

intestine. Finally, the intestinal microbiota could be influ-

enced by antigen-specific activation of iNKT cells with

aGalCer. On the one hand, oral challenge of control mice

with aGalCer led to an increase in Bacteriodetes and Pro-

teobacteria but a decrease in Firmicutes species.46 On the

other hand, injection of aGalCer into GF mice delayed

their reconstitution with bacteria given orally.68 However,

information is still limited on how iNKT cells could

achieve this influence on the microbiota (Box 1).

iNKT cells and the microbiota in the respiratory
tract

The mammalian respiratory system is generally divided

into the upper and lower respiratory tract. The upper res-

piratory tract is composed of the nose, nasal cavity and

sinuses, pharynx (throat) and larynx (voice box) and is

the first mucosal site where the body encounters air-

borne microorganisms. The lower respiratory tract

includes the conducting airways (trachea, bronchi, bron-

chioles) and the alveoli, in which the gas exchange occurs.

The upper respiratory tract retains larger particles; how-

ever, particles smaller than 1–3 lm, such as microorgan-

isms, pollen and smoke, can pass to the lower respiratory

tract. There, particles or microorganisms can be trapped

in the mucous that is secreted by submucosal mucous

glands and lines the lower airways. The rhythmic pulse-

like movements by the cilia of the epithelial cells then

transport the mucus and its trapped particles to the

upper respiratory tract where they are eliminated either

via the digestive tract or through the sneeze and cough

reflexes. Furthermore, this mucus and the liquid layer on

the airway surfaces of the lower respiratory tracts contain

various antimicrobial peptides and antigen-specific secre-

tory IgA to protect the lung.71,72 Despite these mechanical

and chemical defence mechanisms, the lower airways are

not sterile, but host a unique commensal microbiota.

The airways are colonized immediately after birth and

a stable commensal microbiota develops within the first

years of life.73 This commensal microbiota contributes to

lung development and function, and to host defence; a
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disordered microbiota (dysbiosis) is a common feature of

chronic lung inflammations, like asthma.71,73 The core

microbiota of the healthy lung contains five bacteria

phyla: Bacteroidetes, Firmicutes, Proteobacteria, Fusobacte-

ria and Actinobacteria.71,73

iNKT cells are more frequent in the lung than in the

secondary lymphatics,24 with a strong influx from the

blood following lung inflammation.74 There is strong evi-

dence for a major role for iNKT cells in regulating

immune and inflammatory responses in the respiratory

system. They are important contributors for most asthma

models and have been implicated in the pathogenesis of

human asthma.75,76 Furthermore, iNKT cells are impor-

tant for a protective immune response in the lung to

many infectious agents.77 It is clear now that several of

these airway pathogens contain iNKT cell antigens.

Besides the Sphingobium bacteria mentioned above,

iNKT cell antigens have been described for Mycobacterium

tuberculosis, the causative bacteria of tuberculosis,78 Strep-

tococcus pneumoniae, the leading cause of community-

acquired pneumonia,62 group B streptococcus,62 Saccha-

ropolyspora spp., the leading cause for Farmer’s lung,63

and the fungus Aspergillus fumigatus.79 In contrast to

M. tuberculosis, which is considered an obligate pathogen,

the other organisms on this list are opportunistic patho-

gens as they can be found in the human microbiota to

varying extents and are usually asymptomatic in healthy

individuals. Nonetheless, the presence of particular com-

mensals or the composition of the lung microbiota can

probably impact inflammatory responses. For example,

patients with poorly controlled asthma have a higher bac-

terial count in the lung, and some of the taxa (e.g. Sphin-

gobium) are known to bear iNKT cell antigens.80

Additionally, several of the organisms mentioned above

can readily be detected in the environment, like Sphingob-

ium spp., Saccharopolyspora spp., or Aspergillus fumigatus,

indicating that the inhaled air is another source for iNKT

cell antigens.64 Indeed, the majority of sterile house dust

extracts (HDEs) that we tested contained antigens for

mouse and human iNKT cells.81 HDEs are simple aque-

ous preparations from house dust that provide a relatively

complete sampling of the environment without the need

for a priori assumptions imposed by the nature of the

purification.82 The HDEs displayed adjuvant-like proper-

ties in an iNKT-cell-dependent allergen-induced mouse

asthma model.81 When different HDEs were tested, we

noted a large variability in the antigenic strength as well

as in the chemical nature, indicating that different HDEs

could contain several distinct iNKT cell antigens.81 Fur-

thermore, as our experiments indicated that dust mites

are probably not the source of the antigenic activity

found in HDE,81 we consider bacteria as the most likely

source of these environmental iNKT cell antigens.64 How-

ever, it should be noted that some preliminary data sug-

gest that plants and their pollen might contain iNKT cell

antigens as well.83–85 Altogether, recent findings indicate

that antigens for iNKT cells are almost ubiquitous

indoors and in the environment. As they will reach the

airways with the inhaled air, it seems likely that iNKT cell

antigens are present under normal conditions in the lung

at low levels and could under certain conditions con-

tribute to airway inflammation.

Interestingly, however, the age at the time of the anti-

gen exposure seems to be important as well. Whereas the

iNKT cell antigens in the HDEs greatly augmented symp-

toms in an allergen-induced asthma model in adult

mice,81 they seemed to have an opposite effect early in

life. The ‘Urban Environment and Childhood Asthma’

(URECA) project is a longitudinal study that follows

infants born to parents with asthma from birth through

to age 14–16 years.86 As part of the URECA study we

correlated the iNKT cell–antigen content of the house

dust from children when they were 3 months old with

the clinical symptoms of those children at age 3–
7 years.87 Our data indicate that infants growing up in

homes containing more iNKT cell antigens were less

likely to develop asthma.87 A child’s house that is rich in

antigens for iNKT cells probably reflects an environment

with increased microbe exposure. According to the ‘hy-

giene hypothesis’, increased microbial exposure in the

first years of life protects children from asthma.88,89 In

line with this hypothesis are also the data on lung iNKT

cells in GF mice. Such GF mice had a higher frequency of

iNKT cells in the lung than specific pathogen-free control

mice.35 Similar to the intestine, this frequency remained

high in the lung if the mice were not colonized with bac-

teria within the first 3 weeks of life.35 Due to this

increased frequency of effector iNKT cells in the lung,

such mice were more susceptible to allergen-induced

asthma as well.35 Similarly, the deliberate activation of

iNKT cells in 2-week-old mice with an H. pylori-derived

antigen or the T helper type 1-biasing antigen C-GalCer

protected mice against asthma 6 weeks later.56 Surpris-

ingly, a Sphingobium-derived antigen was not able to

induce this protection.56 These data demonstrate that the

influence of the commensal microbiota on iNKT cells can

have important roles in the regulation of the immune

response in the airways and suggest that this impact is

influenced by the age of the individual. In contrast to the

intestine, no information is currently available as to

whether iNKT cells can influence the lung microbiota or

can regulate the production of anti-microbial peptides in

the lung under steady-state conditions.

iNKT cells and microbiota in other mucosal
tissues

Much less is known about the role of iNKT cells at other

mucosal surfaces and of their interaction there with the

local commensals than for the intestine or the lung.
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Although, the microbial composition of the urogenital

tract differs from the intestine, several of the bacteria

known to bear iNKT cell antigens can be found in the

urogenital tract of healthy individuals.90,91 iNKT cells are

functional in the bladder, as aGalCer activation was

shown to support bacterial clearance in urinary tract

infections.92,93 Furthermore, urethral epithelial cells were

shown to be receptive to retrograde signalling down-

stream of CD1d.94 Therefore, it seems likely that iNKT

cells play a role in the protection of the mucosal surface

of the urogenital tract as well.

Concluding remarks

It is becoming increasingly clear how intricate and far-

reaching the interaction between the host and its com-

mensal microbiota is, where each individual player seems

to have its own role at maintaining and fostering this

mutually beneficial relationship. These data also establish

a mutual interaction between the commensal microbiota

and iNKT cells, where the microbiota is required for

iNKT cells to gain function, and where iNKT cells can

influence the composition of the mucosal flora. More-

over, they suggest that iNKT cells play an important role

in supporting the health and homeostasis of the mucosal

tissues by acting as an earlier sensor for tissue damage

and bacterial translocation.

The microbiota is a major source for iNKT cell anti-

gens. These include bacteria, fungi, protozoa and metazoa

that either colonize the mucosa (true or facultative com-

mensals, opportunistic pathogens), or temporarily present

themselves at the mucosa following ingestion or inhala-

tion (commensals, pathogens, environmental antigens)

(Table 1). Besides microbes, environmental antigens64

could be derived from food components too, like milk

lipids,95,96 and from airborne pollen,83 either directly or

after processing by the commensals. Furthermore,

microbe-induced changes in the presentation of host-

derived self-lipids or the expression levels of CD1d itself

could conceivably modulate mucosal iNKT cell responses

as well.97,98 Finally, although the GF data indicated that

pathogen-associated molecular pattern-induced signals are

not necessary for full iNKT cell maturation,33,35 it is likely

that such signals are involved in the regulation of iNKT

cell functions in the mucosa (Box 1). Such indirect sig-

nals could explain the long-lasting effects on iNKT cell

frequency and functionality following virus infection.56,99

In this context, it is notable that iNKT cells can also be

activated by bacterially derived superantigens.100,101

Moreover, anything that changes the composition of

the commensal microbiota could also potentially impact

iNKT cells. Host-derived variables, like gender and genet-

ics, are known to impact the microbiota.102,103 The list is

longer for environmental variables, inducing the diet (e.g.

fibre content, antibiotics/probiotics), housing (e.g. urban/

rural, pets), and the presence of chronic infections (e.g.

helminths) or other ‘pathobionts’.104–107 Consequently,

the microbiota is dynamic.108

An intriguing finding is the far-reaching impact that

the microbiota can have on the host. On the one hand,

changes in one mucosal surface can lead to changes in

other mucosal sides. For example, using aGalCer as adju-
vant for an sublingual vaccination led to increases in

antigen-specific antibody levels also in vaginal washes.109

Furthermore, changes in the microbiota of one mucosal

tissue can impact the frequency and function of immune

cells of other mucosal tissues.110 On the other hand, the

impact of the microbiota is not limited to the mucosal

surfaces and can influence apparently any part of the

body, including seemingly remote areas, such as the

brain.111 With regard to iNKT cells, the above-mentioned

systemic effects of antibiotic treatment and the role of

iNKT cells are relevant in sepsis,112 which is often caused

by translocated intestinal bacteria.113 Furthermore, one

member of the commensal Sphingobium species (Novosph-

ingobium aromaticivorans) has been linked to iNKT cell-

dependent autoimmune responses against the bile duct in

mice53 and humans.114,115

However, many open questions remain with regard to

the details of the mutual regulation of iNKT cells and the

commensal microbiota. For many of the observed influ-

ences the mechanistic understanding is still rudimentary,

and many new microbial mediators will probably be dis-

covered, adding to the complexity. It seems likely that

different commensals provide at times complementary or

opposing influences, as reported for example for B. frag-

ilis.37,59 Furthermore, the response of iNKT cells towards

microbial-derived signals can be pro-inflammatory or

anti-inflammatory and the decisive factors governing this

outcome are largely unclear. Whereas the nature of the

antigen-presenting cell probably plays a role,116 the

potential involvement of different iNKT cell subsets is

currently unexplored. Finally, much needs to be learned

about the mechanisms of the systemic impact on iNKT

cells and the extent to which the microbiota impacts

iNKT cell functions all over the body.

Invariant NKT cells are of great therapeutic potential as

the lock-and-key principle of CD1d/iTCR is basically

shared by every human being. Consequently, iNKT cell

antigens are already in clinical trials for cancer therapy

and for several vaccination approaches,117,118 and we

expect many new applications, in particular for mucosal

vaccinations, in the near future. The data reviewed here

also suggest that iNKT cells could be a promising thera-

peutic target to address microbial dysbiosis, which is

linked to many mucosal diseases.119,120 Furthermore, the

finding that neonatal changes can have life-long impacts

on the frequency of mucosal iNKT cells is intriguing, as

it suggests an option for preventive approaches to treat,

for example, asthma.
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