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Abstract
It is generally accepted that recent advances in anticancer agents have contributed significantly to the improvement of both 
the disease-free survival and quality of life in cancer patients. However, in many instances, a favorable initial response to 
treatment changes afterwards, thereby leading to cancer relapse and recurrence. This phenomenon of acquired resistance to 
therapy, it is a major problem for totally efficient anticancer therapy. The failure to obtain an initial response reflects a form 
of intrinsic resistance. Specific cell membrane transporter proteins are implicated in intrinsic drug resistance by altering 
drug transport and pumping drugs out of the tumor cells. Moreover, the gradual acquisition of specific genetic and epigenetic 
abnormalities in cancer cells could contribute greatly to acquired drug resistance. A critical issue in the clinical setting, is 
that the problem of drug resistance appears to have a negative effect on also the new molecularly-targeted anticancer drugs. 
Several ongoing efforts are being made by the medical community aimed to the identification of such resistance mechanisms 
and the development of novel drugs that could overcome them. In this review, the major drug resistance mechanisms and 
strategies to overcome them are critically discussed, and also possible future directions are suggested.
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MDR  Multidrug resistance
ABC  Adenosine triphosphate-binding cassette
DHFR  Dihydrofolate reductase
NER  Nucleotide excision repair
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Introduction

Drug resistance can be defined as the decrease in the effi-
cacy and potency of a drug to produce therapeutic merits 
and represents a major impediment to the disease treatment 
and overall patient survival. Of note, resistance to antican-
cer treatments can be manifested by local or loco-regional, 
as well as distant tumor metastases leading in the paradox 
of therapy-induced metastasis (TIM) [1–3]. In many cases, 
tumors such as renal cancer, hepatocellular carcinoma and 
malignant melanoma often exhibit intrinsic resistance to 
chemotherapy, without prior exposure to anticancer agents, 
so the initial response to treatment is poor [1]. In other set-
tings, the initial optimism after good treatment response is 
often followed by poor results and a devastating outcome, 
as tumors initially sensitive to therapy, later become unre-
sponsive due to development of acquired drug resistance. 
Currently, surgery and/or radiotherapy represent the opti-
mal treatment modalities for the management of localized 
tumors. Systemic treatments are required for hematologic 
malignancies or metastatic tumors. Current forms of sys-
temic treatment are chemotherapy, immunotherapy and anti-
angiogenic agents [6].
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The interaction between the drug and the tumor microen-
vironment is a complex phenomenon. Cancers have the abil-
ity to develop remarkable resistance to various treatments 
which target different molecular pathways [6]. Recent evi-
dence suggests that radio- or chemotherapy for breast can-
cer result in a stem cell-like phenotype in non-stem tumor 
cells. Therefore, as it has also been suggested by a recent 
extensive meta-analysis, there is an urgent need to identify 
basic factors that determine drug resistance in cancer stem 
cells [7]. Of particular note, several lines of evidence have 
demonstrated that chemotherapy can potentially increase the 
levels of circulating endothelial progenitor cells (EPCs) that 
promote tumor growth and metastasis [3, 8].

In the “new era of targeted chemotherapy”, molecules and 
metabolic pathways implicated specifically in the growth 
and proliferation of cancer cells are blocked using molecu-
larly-targeted drugs e.g., imatinib (Gleevec) which specifi-
cally targets BCR-ABL in chronic myeloid leukemia, aiming 
at achieving maximum treatment response and minimum 
toxicity compared to other types of cancer treatment. Of 
importance, the more targeted a drug is, the lower the prob-
ability to elicit drug resistance [9]. The largely quantitative 
difference between the conventional and the molecularly-
targeted drugs, that provides some therapeutic margin, is 
that the targets of the former are mainly cellular (e.g., cell 
proliferation and DNA replication) or components (e.g., 
microtubules, topoisomerases) that are both in normal and 
cancer cells [10]. As a result, the molecularly-targeted drugs 
are less toxic than the conventional drugs, and they achieve 
effective treatment at remarkably lower doses than the maxi-
mum tolerated dose [11]. However, both types of drugs (i.e., 
conventional and molecularly-targeted) suffer from the prob-
lem of intrinsic and acquired drug resistance [12].

In the present review, the main factors that contribute to 
a compromized effectiveness of systemic anticancer drug 
regimens, as well as the potential mechanisms underlying 
drug resistance, are discussed.

Intrinsic and acquired drug resistance

Drug resistance may arise due to intrinsic and/or acquired 
factors. Intrinsic resistance can be attributed to: (a) drug 
breakdown, (b) altered expression and/or function of the 
drug target, (c) altered drug transport across the cellular 
membrane or (d) reduced interaction efficiency between the 
drug and its molecular target [4, 5]. Intrinsic cellular resist-
ance can be mediated through ATP-dependent membrane 
transporters or nuclear receptors, e.g. sxr [14]. In addition, 
cellular metabolic processes, such as ceramide glycosylation 
decrease efficacy of chemotherapeutic agents [15] Also, cell 
cycle regulators and DNA damage repair factors enhance 
cross-drug resistance, by inhibiting drug accumulation, 
reducing influx, increasing efflux through cell membrane 

transporters, or inactivating drugs [9, 16]. Of interest, inac-
tivation of tumor-associated genes including the tumor sup-
pressor gene TP53 has been shown to result in resistance to 
chemotherapeutic drugs [17].

On the other hand, acquired drug resistance is influenced 
by genetic or environmental factors that facilitate the devel-
opment of drug-resistant cancer cell clones or induce muta-
tions of enzymes involved in relevant metabolic pathways 
[1, 5].

Genetic determinants of acquired drug resistance

Genetic instability in the form of aneuploidy, deletions, point 
mutations, chromosomal translocations and gene amplifica-
tions is a key factor in several aspects of cancer pathogenesis 
[18], including intratumor heterogeneity, which fosters pri-
mary cancers, distant metastatic lesions and cancer relapse 
after therapeutic failure [19, 20].

Mathematical and computational models indicate a posi-
tive correlation between chemotherapeutic resistance and 
the number of spontaneous genetic mutations [21, 22], 
which can be utilized in adjusting the administered dose 
or determining the type of administered treatment [23, 24]. 
Other models used paradigm prokaryotic organisms, such 
as Escherichia coli, in an effort to detect mutations in drug-
resistant cancer cells and investigate their role in drug resist-
ance [25–31]. These studies demonstrated that drug resist-
ance usually results in a pattern of random mutations rather 
than a drug-specific effect [32–35].

Overall, resistance to drugs is directly dependent on the 
stability of the genetic material of the tumor cells and the 
level of genomic instability, the mechanism(s) of action of 
a chemotherapeutic drug, the dose of the administered drug 
and the treatment intervals [21, 22, 24]. Alterations in the 
genetic material such as inactive mutations may occur either 
before or during treatment, in small subpopulations of can-
cer cells. It is also possible that cancers intrinsically sensi-
tive to chemotherapy contain at least one drug-resistant cell 
clone, expansion of which leads to acquired resistance and 
possibly recurrence. Therefore, combinatorial drug therapy 
provides a powerful rationale for reducing the likelihood of 
the development of multiple resistant clones, especially for 
patients undergoing adjuvant anticancer therapy with micro-
metastases and low-tumor burdens [36, 37].

There is an increasing interest in studying cancer clonal 
cell subpopulations and the evolution of resistant variants 
[38–40]. These studies demonstrate an intratumor hetero-
geneity and changes in the distribution of clonal subpopula-
tions following treatment administration [41]. Furthermore, 
gene amplification (i.e., increase in gene copy number) of 
specific drug resistance-relevant genes was found to be 
associated with enhanced resistance to many molecularly-
targeted drugs [18, 42].
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Epigenetic determinants of acquired drug resistance

Epigenetic factors, such as DNA methylation and chromatin-
remodeling, contribute greatly to drug tolerance [43–45]. 
Zeller at al. [46] identified a series of genes that exhibited 
promoter hypermethylation in the cisplatin resistant ovarian 
cancer cells compared to their drug sensitive counterparts. 
Given that hypermethylation of gene promoters can be asso-
ciated with transcriptional gene silencing [47], demethyla-
tion of several of these genes led to gene re-activation and 
restored chemosensitivity in cancer cells. In another study 
by Bhatla et al. [48], inhibition of histone deacetylation and 
DNA methylation resulted in the activation of genes prefer-
entially methylated and repressed in relapsed pediatric acute 
lymphoblastic leukemia and drug sensitivity. Of importance, 
targeting of DNA methyltransferases effectors of DNA meth-
ylation and histone modification was found to reverse chem-
oresistance in heterogeneous multiple myeloma [49].

Intrinsic drug resistance‑associated membrane 
proteins

Multidrug resistance (MDR) is largely dependent on the 
activity of membrane transporter proteins, referred to 
as “drug resistance-associated membrane proteins” or 
“DRAMPs” which act either directly by extruding drug 
molecules out of cells to reduce intracellular accumulation, 
or indirectly by affecting net accumulation of drugs through 
physico-chemical processes [4, 50].

Two major classes of DRAMPs have been identified: (i) 
the ATP-binding cassette (ABC) transporter superfamily, 
which pumps hydrophobic chemotherapeutic drugs out of 
tumor cells thereby reducing the net intracellular accumula-
tion and thus the efficacy of the drugs into tumor cells, and 
(ii) the solute carrier transporters which increase chemore-
sistance by interfering with the cellular uptake of hydro-
philic anticancer agents [4, 50]. Approximately, 50 ABC 
transporters have been identified in the human genome 
which catalyze the active transport of diverse chemical 
compounds including anticancer drugs in an ATP-dependent 
way by a pair of cytoplasmic nucleotide-binding domains 
(NBD) [51]. There are three broad groups of ABC transport-
ers implicated in MDR, namely, P-glycoprotein, ABCG2, 
and the multidrug resistance-associated proteins (MRPs) 
[50, 52] discussed below.

P‑glycoprotein

Overexpression of the protein P-glycoprotein (or ABCB1/
MDR1), an ATP-dependent efflux pump, results to MDR 
in several types of cancer (e.g., multiple myeloma, leuke-
mia) [53–56], through the active translocation of drug mol-
ecules out of the tumor cells [50, 57]. The final prognosis in 

epithelial and solid tumors, as well as in blood malignancies, 
was particularly unfavorable due to enhanced ABCB1 efflux 
potential [58–60]. ABCB1 overexpression has been demon-
strated in cases of chemotherapeutic failure [59–63]. Moreo-
ver, a high level of ABCB1 gene amplification was observed 
in MDR murine melanoma cells [64]. P-glycoprotein exhib-
its a very broad substrate specificity, including anthracy-
clines, vinca alkaloids, or taxanes, epipodophyllotoxins, 
which is the biochemical basis for its “MDR” property [65].

MDR‑associated protein

The MDR-associated proteins (MRPs) constitute a group 
of 13 members, including MRP1 (ABCC1) [50, 52]. MRP1 
overexpression was shown to result to resistance to antican-
cer agents. The presence of reduced glutathione (GSH) is a 
prerequisite for the transport of unmodified chemotherapeu-
tic agents via MRP1 [66]. A peptidomimetic glutathione-
conjugate of ethacrynic acid (EA), GS-EA, was found to 
inhibit MRP1-mediated efflux of drugs in ovarian cancer 
cells which display overexpression of MRP1. In addition, 
resistance of these cells to methotrexate was reversed in part 
[67].

ABCG2

Another member of the broad ABC superfamily, ABCG2, 
was overexpressed in human-derived breast cancer cells 
resistant to adriamycin [68]. Furthermore, it has been 
reported that hypoxia can regulate ABCG2 expression. 
Stem cells or cancer cells in hypoxic environment exhibit 
resistance to drugs due to enhanced ABCG2 expression [69]. 
ABCG2 is responsible for cell resistance to many anticancer 
drugs, with camptothecins being the most prominent exam-
ple [70, 71]. However, FL118, a camptothecin analogue, 
was able to overcome effectively ABCG2-induced resistance 
[72]. The substrates of ABCG2 include many molecularly 
targeted chemotherapy drugs, such as Gefitinib an inhibitor 
of epidermal growth factor receptor (EGFR), and Imatinib. 
However, its importance in clinical practice remains to be 
investigated.

Classic chemotherapeutic drugs

Methotrexate is an anticancer molecularly-targeted cyto-
static drug, used either alone or in combination with other 
agents, to treat a variety of malignancies such as breast, 
lung, skin, and head and neck cancer. It is also used for 
the treatment of severe rheumatoid arthritis and psoriasis. 
Methotrexate exerts its anticancer effect through inhibit-
ing the expression of its biochemical target dihydrofolate 
reductase (DHFR), a key enzyme in DNA synthesis, which 
facilitates cancer cell growth and proliferation. Molecular 
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studies have demonstrated enhanced DHFR expression in 
cells that display resistance toward methotrexate. In metho-
trexate-resistant cancer cells, increased DHFR gene copies 
were identified [41].

Some anticancer agents, such as vinca alkaloids and 
taxanes prevent cell division through altering the dynamic 
instability of microtubules [73]. Taxanes have been suc-
cessfully used as anticancer agents over the last 25 years 
by destabilizing microtubules; whereas, vinca alkaloids are 
implicated in the inhibition of microtubule function. The 
synergistic effect of these agents was tested experimentally 
and it was observed that their microtubule-specific activity 
was enhanced [74]. Resistance against the taxane paclitaxel 
was exerted by β III-tubulin isoforms [75]. In several types 
of epithelial tumors, βIII-tubulin expression was linked to 
poor response toward paclitaxel treatment and overall patient 
outcome [76].

Of particular note, an initial favorable clinical response 
was followed by resistance to taxane treatment. This could 
be explained by a gradual change in microtubule dynamics 
and functionality [77]. Particularly, the microtubule-asso-
ciated protein (MAP)-Tau interferes with the binding of 
taxanes to microtubules. Down regulation of MAP-Tau was 
shown to lead to alteration of cancer cells’ chemosensitivity, 
rendering them more vulnerable to paclitaxel [78].

Anticancer drugs like camptothecin and epipodophyl-
lotoxin target key enzymes involved in DNA replication 
and transcription such as topoisomerases. Camptothecin 
is a cytotoxic alkaloid administered to patients with leuke-
mia [79, 80]. Experimental studies show that resistance to 
camptothecin and treatment failure are due to the activity 
of the enzyme topoisomerase type I [81]. Moreover, over-
expression of topoisomerases type II was associated with 
altered efficacy of molecularly-targeted drugs [82, 83], such 
as Adriamycin, in chemoresistant leukemia cell lines [80].

Genetic alterations, such as mutations, in molecular drug 
targets like genes or proteins contribute greatly to acquired 
drug resistance, thereby leading to limited effectiveness 
or complete ineffectiveness of chemotherapy, mainly in 
advanced cancers [65]. For instance, Bcr-Abl kinase domain 
point mutations could impair or abolish imatinib binding 
in chemoresistant patients with chronic myeloid leukemia 
(CML) [84, 85].

DNA damage repair

Important determinants of response to many chemotherapy 
drugs and targeted therapies represent the DNA damage 
repair (DDR) pathways which include a complex of pro-
teins, like Nucleotide Excision Repair (NER) machinery that 
processes and removes the so-called bulky lesions, such as 
those induced by UV light (thymine dimers and 6,4-photo-
products) and chemotherapeutic drugs such as cisplatin [86].

Two sub-pathways are involved in NER: the global 
genomic NER (GG-NER or GGR) which repairs DNA dam-
age in transcriptionally silent loci and the transcription-cou-
pled NER (TC-NER or TCR) which repairs lesions located 
in the transcriptionally active DNA regions. The NER path-
way consists of some basic steps, including the identifica-
tion of DNA damage, DNA unfolding, and other processes 
such as incision, polymerization, degradation, and ligation 
[87]. One of the most important genes related to NER is 
ERCC1, overexpression of which is usually associated with 
DDR induced by platinum and alkylating agent-based treat-
ment and is correlated with negative outcomes in patients 
receiving cisplatin-based treatment in advanced non-small 
cell lung cancer (NSCLC) [88]. DNA damage caused by 
platinum-based drugs can also be recognized by specific pro-
teins, such as mismatch repair (MMR) complexes, thereby 
resulting to transduction of DNA damage signals and vari-
ous downstream effectors [89].

In addition, the DNA damage repair protein 
 O6-methylguanyl DNA methyltransferase (MGMT) is asso-
ciated with resistance to chemotherapy with DNA alkylat-
ing anticancer drugs, such as nitrosoureas, carmustine and 
temozolomide in central nervous system tumors [87, 90]. 
The crosstalk and the signals generated between the effec-
tor molecules involved in DDR lead to either cell death 
or cell survival. One very important effector is the well-
known TP53 gene which triggers a major tumor abrogation 
mechanism via primarily the initiation of cell death, and 
plays a cardinal role in carcinogenesis when mutated [91]. 
If DNA damage is extensive and impossible to be repaired, 
then the apoptotic pathway becomes activated [17]. Moreo-
ver, DNA damage can result in apoptosis through the TP73 
gene, a TP53-related gene [89]. There is a close relationship 
between oncogenesis and drug resistance/sensitivity modu-
lated by a pathway dependent on TP53, mutations of which 
are detected in many human cancers [92, 93].

Cancer stem cells

Cancer stem cells have stem-like properties and they exhibit 
higher resistant to chemotherapy in contrast to the differen-
tiated tumor cells. Factors that affect CSCs’ resistance to 
drugs include: (a) induction of pathways implicated in stem 
cell maintenance; (b) activation and elevated expression of 
ABC transporter proteins (e. g., ABCB1 and ABCG2); (c) 
overexpression of detoxification enzymes such as certain 
aldehyde dehydrogenase (ALDH) isoforms; (d) inhibition 
of apoptotic pathways, like the ones mediated by the pro-
apoptotic TP53; (e) enhanced DNA damage repair capac-
ity, thereby reducing the effectiveness of DNA-damaging 
chemotherapeutic agents; and (f) increased influence of the 
tumor microenvironmental niche [7, 94].
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Cancer microenvironment

The cellular environment can affect greatly drug response, 
where the cell kinetic parameters and proliferation rate con-
stitute important determinants of therapeutic effectiveness. 
Anticancer drugs and new biological agents that target these 
determinants have been shown to exert their antineoplastic 
effect by tranquilizing cancer cells [95]. Increased treatment 
effectiveness is usually achieved by targeting rapidly prolif-
erating cancer cells [96]. According to a study by Hirst and 
Denekamp, the most effective chemotherapies are those that 
rapidly neutralize highly proliferating cells or selectively 
affect cell division [97]. Different treatments are required 
in the hypoxic regions of tumors or in regions with slow 
cell proliferation. Combination therapies with more than 
one anticancer agents do not necessarily guarantee treat-
ment success because a drug can counteract or overlap the 
effect of another drug so that the combined effect is lower 
than predicted. There is a positive correlation between tumor 
cell proliferation and tumor vasculature, which ensures con-
tinuous blood supply to the growing tumor cells, as well 
as vascular permeability [97]. Reduced blood flow leads to 
deprivation of nutrients essential for the increased energy 
demands of the cell in the proliferation phase, thereby lead-
ing to delay or inhibition of proliferation. The slow cell 
proliferation and the poor blood supply are associated with 
potential resistance to molecularly-targeted drugs [98].

Novel chemosensitizing agents have been developed to 
counteract the phenomenon of resistance to many molecu-
larly-targeted drugs [99]. Cell adhesion, cytokine activity, 
growth factors, cell proximity, oxygen and energy supply 
to the cells, as well as other factors, are suggested to be 
implicated in reduced anticancer drug response, decreased 
chemotherapeutic effectiveness and subsequent rapid tumor 
recurrence [100, 101].

Another factor which regulates the accumulation of oxy-
gen to tumor cells is the hypoxia- inducible factor 1 (HIF1), 
a transcription factor [102]. HIF-1 promotes the activation 
of genes implicated in hypoxia signaling and inhibition of 
cell proliferation. HIF-1 is also implicated in the intracellu-
lar metabolism, pH regulation, inhibition of autophagy and 
cell death [102].

Oxygen deficiency was shown to be associated with the 
activation of genes encoding proteins that induce resistance 
to anticancer drugs, such as P-glycoprotein, especially in 
solid tumors [103]. Specific anticancer drugs can inhibit 
oxygen supply, allowing cancer cells to enter a dormant state 
[104]. Cells that survive drug treatment may potentially pro-
liferate under hypoxic conditions, leading to tumor relapse in 
a short span of time. Additionally, the sufficient oxygenation 
of normal tissues is important in the mobility of anticancer 
drugs and favorable response to drug treatment [105]. There-
fore, low oxygen concentration in tumor tissues is linked 

to low activity of anticancer drugs, poor tumor response to 
chemotherapy or rapid tumor relapse [106].

The cytotoxicity of anticancer drugs is largely affected 
by the pH of the tumor microenvironment. Molecules pas-
sively diffuse across the cell membrane, more effectively in 
the uncharged (non-ionized) form. Accordingly, alkalization 
of the extracellular environment increases the uptake and 
cytotoxicity of drugs such as Doxorubicin, with a pKa value 
of almost 9 [107, 108]. On the other hand, a microenviron-
ment with acidic pH can also inhibit the active transport of 
certain drugs (e.g., methotrexate) [109].

Drug uptake and drug activation

Plasma membrane proteins play a very important role in 
intrinsic drug sensitivity or resistance, given that antineo-
plastic drug molecules may be expelled from cancer cells 
either through passive diffusion or facilitated diffusion 
mediated by membrane proteins [110]. The majority of 
antimetabolite drugs need metabolic activation to produce 
therapeutically effective nucleotides or nucleosides intracel-
lularly through the activity of phosphoribosyl transferases 
and kinases [111].

Another component of the redistribution of anticancer 
drugs is the binding of drug molecules to specific intracellu-
lar proteins [112]. In blood malignancies, these proteins have 
been found to largely contribute to significant drug resist-
ance and treatment failure. For example, overexpression of 
a major vault protein, LRP, was observed in acute myeloid 
leukemia (AML) patients [113]. Moreover, changes in intra-
cellular chemical processes affect drug kinetics, leading to 
treatment failure [114].

Moses Judah Folkman proved first that angiogenesis and 
cancer are closely related [118]. Drug molecules are deliv-
ered to the target tumor cells through blood vessels. Abnor-
mal vasculature and ultimately necrosis largely affect drug 
penetration and effectiveness [119, 120]. Currently, there 
is a number of chemotherapeutic drugs targeting the potent 
angiogenic factor, vascular epithelial growth factor (VEGF), 
such as Bevacizumab, Aflibercept, Pazopanib, Sunitinib and 
Sorafenib. The drugs normalize tumor vasculature, in order 
to increase the distribution of anticancer agents and achieve 
maximum therapeutic efficacy [121]. Moreover, the vari-
ous physical barriers, such as the blood–brain barrier (BBB) 
and the blood-testis barriers, prevent the diffusion of chemo-
therapeutic drugs. Of note, overexpression of P-glycoprotein 
was observed in the endothelial cells of these barriers [122].

Strategies to overcome resistance mechanisms

Many factors and parameters must be taken into considera-
tion for the effective cancer treatment using antineoplastic 
drugs. Clinicians are mainly concerned with the route of 
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drug administration as well as the maximum tolerated dose 
able to destroy cancer cells while minimizing adverse effects 
[115]. The “maximum tolerated dose”, also called “maxi-
mum tolerable dose” or the “maximally tolerated dose” 
(MTD), can be defined as the highest single dose of an agent 
or treatment that does not cause significant or intolerable 
toxicity/adverse effects. For many drugs, the optimal dose 
does not necessarily coincide with the MTD; thus, deter-
mination of the optimal dose poses a great challenge [116, 
117].

A novel, promising modality of drug administration has 
emerged, the so-called ‘metronomic chemotherapy’, that is, 
the repetitive administration of chemotherapeutic agents at 
low doses. It has been demonstrated that metronomic chemo-
therapy can be extremely beneficial in many cases; however, 
extended research is needed to confirm these results [124, 
125]. One therapeutic strategy to overcome drug resistance 
is ‘treatment holiday’, where a patient’s chemotherapy treat-
ment is stopped for some time in order to avoid selection for 
drug-resistant tumor cells that could lead to cancer recur-
rence and relapse [115].

Of importance, special emphasis should be given to the 
development and optimization of molecularly-targeted drugs 
designed to block key genes or gene products implicated in 
chemoresistance. For example, resistance to chemotherapy 

caused by P-glycoprotein can be potentially counteracted by 
adding to a chemotherapy regimen the molecularly-targeted 
drug verapamil, a candidate competitive inhibitor of P-gly-
coprotein [54, 56, 126]. Moreover, a positive correlation was 
observed between cytidine deaminase activity in blast cells 
obtained from acute leukemia patients and the development 
of resistance to the antimetabolite drug cytosine arabinoside 
(ara-C) [114]. Therefore, an effective way of blocking the 
deamination of ara-C would circumvent resistance to ara-C.

Other potential future directions

The apparent complexity of cancer drug resistance, as dis-
cussed throughout the manuscript, leads to the suggestion 
that there is a pressing need for the design of novel thera-
peutic regimens. Unraveling the mechanisms underlying 
patients’ response to anticancer drugs and identification of 
their genetic profile would enable the development of new, 
personalized drugs to prolong patients’ overall survival, as 
well as quality of life.

Fig. 1  An interaction network 
of the genes/gene products 
related to clinical chemore-
sistance with the usage of 
bioinformatics. The associations 
among them were investigated 
and visualized using STRING 
v10.5 [127]. HIF-1: HIF1A, 
sxr: NR1I2, VEGF: VEGFA, 
topoisomerase type I: TOP1, 
topoisomerase type II: TOP2A
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Conclusions

Cancer patients’ chemotherapeutic response and outcome 
depends on multiple redundant and diverse biological pro-
cesses and molecular mechanisms that affect the sensitivity 
of cancer cells to chemotherapy drugs. Multiple molecular 
determinants of intrinsic and acquired resistance, including 
genetic/epigenetic factors, as well as membrane transporter 
proteins that act at the genomic or cellular level respectively, 
have been identified. The key genes/gene products found in 
this review study to be involved in chemoresistance were 
used to construct an interaction network (Fig. 1). These mol-
ecules are, in most cases, highly interconnected and some of 
them (TP53, TP73, VEGFA, HIF1A, ABCB1, ABCG2 and 
TOP1) act as ‘hubs’. This leads to the suggestion that these 
genes/proteins may play a central role in drug sensitivity/
resistance by interacting with each other, either functionally 
or physically. Novel targeted therapies for cancer must be 
developed that would be directed toward cellular drug resist-
ance, and specifically to the ‘hub’ genes. The goal of these 
therapies must be to achieve maximum chemotherapeutic 
effect by eliminating cancer cells, with reduced normal tis-
sue toxicity.
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