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ABSTRACT: In all living organisms, protein kinases regulate various cell signaling events through phosphorylation. The
phosphorylation occurs upon transferring an ATP’s terminal phosphate to a target residue. Because of the central role of protein
kinases in several proliferative pathways, point mutations occurring within the kinase’s ATP-binding site can lead to a constitutively
active enzyme, and ultimately, to cancer. A select set of these point mutations can also make the enzyme drug resistant toward the
available kinase inhibitors. Because of technical and economical limitations, rapid experimental exploration of the impact of these
mutations remains to be a challenge. This underscores the importance of kinase−ligand binding affinity prediction tools that are
poised to measure the efficacy of inhibitors in the presence of kinase mutations. To this end, here, we compare the performances of
six web-based scoring tools (DSX-ONLINE, KDEEP, HADDOCK2.2, PDBePISA, Pose&Rank, and PRODIGY-LIG) in assessing
the impact of kinase mutations on their interactions with their inhibitors. This assessment is carried out on a new structure-based
BINDKIN benchmark we compiled. BINDKIN contains wild-type and mutant structure pairs of kinase−inhibitor complexes,
together with their corresponding experimental binding affinities (in the form of IC50, Kd, and Ki). The performance of various web
servers over BINDKIN shows that they cannot predict the binding affinities (ΔGs) of wild-type and mutant cases directly. Still, they
could catch whether a mutation improves or worsens the ligand binding (ΔΔGs) where the highest Pearson’s R correlation
coefficient is reached by DSX-ONLINE over the Ki dataset. When homology models are used instead of Ki-associated crystal
structures, DSX-ONLINE loses its predictive capacity. These results highlight that there is room to improve the available scoring
functions to estimate the impact of protein kinase point mutations on inhibitor binding. The BINDKIN benchmark with all related
results is freely accessible online (https://github.com/CSB-KaracaLab/BINDKIN).

1. INTRODUCTION

In all living organisms, protein kinases are at the heart of
numerous signaling pathways.1 They regulate diverse cell
signaling events through phosphorylation. The phosphoryla-
tion reaction involves the transfer of an ATP molecule’s
terminal phosphate to a target residue (serine/threonine/
tyrosine/histidine). This transfer adds negative charge to the
phosphorylated residue and alters the physicochemical proper-
ties of the substrate protein. This phosphorylation is used as a
signal to mediate most of the critical cellular processes, such as
apoptosis, cell division, cell migration, and transcriptional
regulation. Because of the essential role of kinases in cellular
homeostasis, deregulation in the protein kinase activity often
results in malignancies. Such deregulations might stem from

expression level changes, as well as from point mutations at or
around the ATP binding pocket of the kinase.

1.1. Fundamentals of Protein Kinase-Mediated
Phosphorylation. Protein kinases mediate catalysis through
their interdomain interactions (between the globular N-
terminal and C-terminal domains) (Figure 1). This architec-
ture grants modularity to the enzyme to leverage the binding of
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ATP, cofactors, and other protein partners, during the
enzyme’s catalytic cycle.2 The smaller N-terminal lobe is
mostly composed of antiparallel β-sheets, whereas the larger C-
terminal lobe is enriched in α-helices.3−5 All protein kinases
share several catalytically important regions, that is, the
gatekeeper residue, the activation loop, the DFG motif, and
the glycine-rich loop. The kinase gatekeeper residue resides
within the ATP-binding pocket (Figure 2). In the inactive
state, the 20−30 residue-long activation loop is found in the
DFG-out conformation. In this state, the catalytic aspartate (D
of DFG), responsible for transferring the phosphate from ATP
to the substrate, blocks the catalytic cleft for substrate entry
(Figure 1). In the active DFG-in conformation, the ATP-
binding pocket is accessible to ATP, while the side chain of the
catalytic aspartate faces the ATP-binding pocket (Figure 1).6,7

The transition from DFG-out to DFG-in states is induced
upon phosphorylation of the activation loop or by binding of
ATP-competitive kinase inhibitors.8−10 In its active form, the
catalytic aspartate chelates either with magnesium or
manganese ions, the essential divalent cofactor cations (Figure
2).11 Together with these cations, the ATP molecule is
coordinated by the glycine-rich loop and a conserved lysine of
the ATP-binding pocket. In this coordination, N1 and N6
nitrogen atoms of the adenine ring form specific hydrogen
bonds with the backbone of the interdomain hinge region
(Figure 2).12 The partially conserved nonpolar aliphatic
residues (leucine, valine, phenylalanine, alanine, and methio-
nine) of the ATP-binding pocket provide van der Waals
contacts with ATP’s purine moiety.13 The details on the
reaction mechanism and kinetics are provided in the
Supporting Information.4,5,14−18

1.2. Protein Kinase Deregulation and Drug Resist-
ance due to Point Mutations. Point mutations, within the
vicinity of the protein kinase’s functionally important regions,
can impact cellular processes by altering the specificity of the
enzyme or creating a constitutively active protein kinase. These
changes can lead to severe clinical outcomes. For example,
naturally occurring bulkier side chain substitutions at the
gatekeeper position cause drug resistance, as they sterically
block the entry of drug molecules into the ATP-binding

pocket. Two such gatekeeper mutations are T315I in ABL
kinase and T790M in EGFR. These mutations sever the critical
hydrogen bond between the gatekeeper threonine hydroxyl
and the ligand. They also destabilize the inactive conformation
of the enzyme, leading to a constitutively active state.
Constitutive activity of these mutants is attributed to the
enhanced van der Waals interactions between the phenyl-
alanine of the DFG motif and the mutant gatekeeper
residue.21−24 The hydrogen bond network between the ATP-
binding pocket and the adenine ring does not involve the
gatekeeper residue side chain. Therefore, the gatekeeper
residue mutations do not hinder the binding of ATP.25−27

Instead, the adenine ring engages in a conserved hydrogen
bonding network, involving the hinge region (backbone) of the
enzyme (Figure 2). Also, the increased space occupation by the
larger gatekeeper residue does not impact the accommodation
of ATP because of the large spatial gap between the ATP
molecule and the gatekeeper residue.
Frequently, mutations in cancer can also be found within the

N-lobe side of the activation loop.28 For example, V600 of
BRAF is a commonly mutated residue in cancer. The V600D/
E/G/K/L/M/R mutations of BRAF result in a constitutively
active enzyme. This mutation position corresponds to
activating D1228V/N/H in MET and D816E/H/V/N/F/Y/
I in KIT. Here, we also see that physiochemically opposing
mutations can yield to hyperactivation: while mutation of
valine to aspartate cause overactivation in BRAF, mutation of
aspartate to valine leads to overactivation in MET and KIT
kinases. Other such prominent examples are L858R (activation
loop) and G719S (proximal to glycine-rich loop) mutants of

Figure 1. Representative protein kinase structure in DFG-in/-out
states. DFG-in and DFG-out conformations of ABL kinase were
superimposed (PDB entries, 3KF4 and 3KFA, respectively).19 In the
DFG-in conformation (cyan), the activation loop exposes the ATP-
binding pocket. It also orients the catalytic aspartate toward the ATP-
binding pocket. In the DFG-out conformation (pink), the activation
loop occludes the ATP-binding pocket and orients the catalytic
aspartate away from the ATP-binding pocket. The glycine-rich loop is
represented in orange.

Figure 2. Catalytic subunit of cAMP-dependent protein kinase in
complex with an inhibitory peptide (which is not covered by the
figure pane) and ATP (PDB entry, 1ATP).20 The ATP, hinge region,
and glycine-rich loop backbone, conserved lysine, and catalytic
aspartate are shown in sticks. Manganese ions are depicted as pink
spheres. The positions of the two common gatekeeper residues are
shown as smaller gray spheres. The blue-, red-, and orange-colored
atoms correspond to nitrogen, oxygen, and phosphorus, respectively.
The possible dipole−dipole (hydrogen bond), ion−ion (salt bridge),
and ion−dipole interactions between the kinase and ATP are depicted
in blue-, red-, and gray-colored dashed lines, respectively.
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EGFR, which, similar to the gatekeeper residue mutations,
destabilize the inactive conformation of the kinase.29 These
observations highlight the complex nature of mutation-induced
physiochemical changes in protein kinases.
1.3. Utilization of Kinase Mutations for Functional

Studies. Drug discovery and chemical genetic fields frequently
make use of ATP-binding pocket mutations to study the kinase
function. In the case of drug discovery, the protein kinase
gatekeeper and other critical residues are artificially mutated in
model systems to study the mechanism of drug resistance. This
approach allows scientists to tailor novel compounds for the
treatment of drug-resistant tumors.30 In chemical genetics,
naturally occurring mutations are used as a tool to elucidate
the biological roles of protein kinases.31 For this, the kinase
gatekeeper residue is mutated to glycine or alanine through
gene editing, which enables the binding of a bulky inhibitor. As
a result of this reverse engineering, protein kinases become
sensitive to inhibitors, which can selectively turn the enzyme
off without interfering with other kinases.26,32 Such engineered
kinases include yeast v-Src (I338G), c-Abl (T315A), Cdk2
(F80G),33 Mps1 (M516G),34 and human Cdk12 (F813G).35

Besides their numerous advantages, exploiting the ATP-
binding pocket mutations also has potential handicaps, such
as incompatibility of the mutation−drug combinations or
reduced enzyme activity after mutation. To minimize these
risks, prescreening of mutation−drug combinations with
binding affinity prediction tools stands out as a promising
strategy.
1.4. How Far Are We from Predicting the Impact of

Mutations on Protein Kinase−Ligand Binding? Several
methods have been proposed to predict protein−ligand

binding affinities. However, only recently, the accuracy of
these methods has been evaluated for predicting the impact of
protein kinase mutations on their ligand binding. In 2018,
Hauser et al. compiled a benchmark set, encompassing 144
ligand-binding affinity data of clinically relevant Abl muta-
tions.36 A year later, Aldeghi et al. assessed the capacity of
statistical mechanics, mixed physics- and knowledge-based
potentials, and machine-learning approaches in predicting the
impact of 31 Abl mutations on their drug interactions.37 Both
of these approaches used a hybrid structure-based Abl
benchmark, composed of wild-type co-crystal/docked struc-
tures and modeled mutant cases. Moreover, both papers
assessed the use of sophisticated tools, the use of which would
be too complicated for many experimental biologists. Next to
these approaches, there are also web-based protein−ligand
binding affinity predictors, which can be easily used by
nonexperts to plan/guide their experiments. However, a
systematic assessment of these tools within the context of
protein kinase mutations has never been performed. To
address this need, here, we have benchmarked four web-based
protein−ligand scoring functions, DSX-ONLINE, KDEEP,
Pose&Rank, and PRODIGY-LIG, as well as two general
scoring functions, PDBePISA and HADDOCK Score,38−45 for
predicting the impact of protein kinase mutations on their
ligand binding. We have selected these predictors based on
their user-friendliness and widespread use. The benchmarking
has been carried out on our structure-based BINDKIN (effect
of point mutations on the BINDing affinity of protein
KINase−ligand complexes) data set.

Figure 3. BINDKIN benchmark characteristics. (a) The corresponding positions of the mutated residues are mapped on a representative ATP-
bound protein kinase (cAMP-dependent protein kinase with the PDB entry 1ATP).20 The green sphere is the position where the majority of
BINDKIN mutations are located. The blue sphere indicates the location of the sensitizing mutations, where the red spheres indicate the mutations
conferring resistance. The light brown ones correspond to the neutral mutations. (b) The distribution of the binding kinetics data for 42 individual
cases. The data was split into Kd, Ki, and IC50 subsets and plotted as box-and-whisker plots for the corresponding wild-type and mutant cases. (c)
The probability distribution of the kinetic data for wild-type and mutant pairs. The blue and red areas indicate the drug-sensitive and drug-resistant
cases, respectively. The KDE (kernel density estimate) is represented by the light-brown area. The distribution of all cases covering the range of 0−
40 nM were given on the right. The subset of cases within the range of 0−0.5 nM were explicitly highlighted on the left.
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2. RESULTS AND DISCUSSION

2.1. Characteristics of the BINDKIN Benchmark. The
BINDKIN benchmark covers nine unique protein kinases
(seven EGFR, three Abl, three Mps1, three Src, two Cdk2, one
ALK, one FGFR, one Kit, and one PKA). In the benchmark,
each wild-type crystal structure has a mutant counterpart,
where both of the cases are bound to the same drug. While
compiling the BINDKIN set, we have made sure that wild-type
and mutant structures and protein kinase−drug binding
affinities come from the same study, so that the experimental
values are comparable. These strict criteria resulted in the
collection of 23 protein kinase−drug pairs (with 8, 9, and 6;
IC50-, Kd-, and Ki-cases, respectively) and 42 individual cases
(with 16, 15, and 11; IC50-, Kd-, and Ki-cases, respectively)
(Table S1). Despite being ideal to convert different types of
kinetic data to a common metric, that is, Gibbs-free energy
(ΔG), we could not perform this conversion due to the
unavailability of substrate concentrations.
The 23 mutant cases in the BINDKIN benchmark include

17 single, three double, two triple, and one quintuple point
mutants. A total of 36 mutations are distributed across 15
unique positions, most of which are located within or at the
boundaries of functionally crucial segments: six positions are at
the hinge region; two positions at the activation loop; and one
position at the glycine-rich loop (Figure 3a). In their wild-type
states, these mutation positions exert diverse biophysical
characteristics (charged, polar, and hydrophobic), whereas in
their mutant forms, they predominantly turn into hydrophobic
and charged amino acids. Approximately, half of the mutations

lead to bulkier residues. 8 out of 42 structures are in DFG-out,
and the remaining structures are in DFG-in conformation.
Except two case pairs, the wild-type and mutant forms of all
proteins share a common DFG state. Among these two pairs,
the wild-type 4WA9 and 5AP1 are in the DFG-out state, while
the mutant 4TWP and 5AP4 are in the DFG-in state. The
DFG state change induced by these mutants may cause the
production of constitutively active protein kinases.
The 18 ligands presented in BINDKIN are all ATP-

competing reversible protein kinase inhibitors. These inhib-
itors are usually composed of five or six-membered, mostly
heterocyclic rings, which enrich the nitrogen content of the
ligands (Table S1, Figure S1). The rings are generally linked by
secondary amine, ether, or ketone groups. Because of the
abundance of unprotonated nitrogen atoms in the rings and
unprotonated oxygen atoms in the linker ether and ketone
groups, the hydrogen bond acceptors are more abundant than
the donors. Regarding the conformational degrees of freedom
of inhibitors, BINDKIN contains both rigid and flexible
ligands, as the number of rotatable bonds in the ligands range
from 0 to 11. We have looked for a relationship between the
ligand properties and the reported binding affinities, but could
not observe a correlation between them (Figure S2).46

BINDKIN spans the binding affinity ranges of 0.80−350,
0.73−185, and 0.07−1090 nM for IC50, Kd, and Ki subsets,
respectively (Table S2).47−62 Therefore, the Ki subset covers
the broadest binding affinity range (Figure 3b). We classified a
mutation as drug-sensitive if the binding affinity of the mutant
complex is at least 10-folds higher (lower IC50, Kd, or Ki) than

Figure 4. Performance of various scoring functions according to direct assessment. Because of the nature of prediction scores, a negative correlation
for pKd (KDEEP) and a positive correlation for the other scoring terms are expected. (a) DSX-ONLINE, (b) HADDOCK2.2 (HADDOCK score),
(c,d) KDEEP (pKd and ΔG), (e) PDBePISA (ΔG), (f,g) Pose&Rank (PoseScore and RankScore), and (h) PRODIGY-LIG (ΔG) performances.
The sample sizes for IC50, Kd, and Ki data are n = 16, n = 15, and n = 11, respectively.
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that of its wild-type state.36,37,63 When the binding affinity of
the mutant complex is lower (higher IC50, Kd, or Ki) than one-
tenth of its wild-type state, then this case is considered as drug-
resistant. The remaining cases are classified as neutral.
According to these criteria, BINDKIN contains 5 sensitive
(one Kd and four Ki), 5 resistant (three IC50, and two Kd), and
13 neutral (five IC50, six Kd, and two Ki) cases (Figure 3c). For
more details on our BINDKIN benchmark, please see the
Methods and https://github.com/CSB-KaracaLab/BINDKIN.
2.2. Majority of Web-Based Scoring Functions can

Predict the ΔΔG-Related Changes Caused by Kinase
Mutations. Advanced computational approaches have been
demonstrated to accurately predict protein kinase−ligand
binding affinities.37,63 Considering that these approaches do
not have a broad reach among the experimental biology
community, we have focused on user-friendly web servers’
performance in predicting the impact of kinase mutations. To
this end, we have tested DSX-ONLINE, HADDOCK2.2
(refinement interface), KDEEP, PDBePISA, Pose&Rank, and
PRODIGY-LIG servers on the BINDKIN benchmark. To
assess the performance of each tool, we have pooled the affinity
predictions (n = 42) and analyzed their association with the
experimental data. This direct assessment shows that the

presented scoring functions could not predict the affinities of
BINDKIN cases (Figure 4). Here, the highest R-value is
produced by PRODIGY-LIG (R = 0.26). When we divide the
same set according to their kinetic metrics (IC50, Kd, Ki), the
highest correlation is obtained by Pose&Rank over IC50 cases
(R = ∼0.50). This performance is followed by KDEEP and
DSX-ONLINE (0.40 < R < 0.50, IC50 cases). Assessing wild-
type and mutant states separately did not improve the
presented correlations (data not shown).
Next to the direct assessment, we have used two other

metrics, that is, delta and binary assessments (Figure S3, see the
Methods, Section 4.4). The delta assessment measures the
absolute change in the affinity upon mutation (correlated to
ΔΔG), improving the R values significantly. This is especially
the case for the R-performances of DSX-ONLINE, KDEEP,
and PoseScore over Ki-cases, which become 0.97, 0.76, and
0.56, respectively. When the performance of these three
predictors is analyzed from the perspective of drug resistance/
sensitivity, it is observed that for each scoring function,
different cases deviate from the linear behavior (Figure 5).
This means that distinct cases pose different prediction
difficulties for the presented scoring functions. In general,
significant binding affinity changes, leading to a gain of drug

Figure 5. Performance of various scoring functions according to the delta assessment. The delta assessment of DSX-ONLINE, KDEEP (ΔG), and
Pose&Rank (PoseScore) is characterized based on the drug resistance/sensitivity of the cases. The data are evaluated as subsets based on the kinetic
metrics. The neutral (gray), drug-resistant (red), and drug-sensitive (blue) cases are indicated.
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sensitivity or resistance, are easier to predict. The Ki-subset is
rich in drug-sensitive cases. Consequently, having the Ki-subset
dominated by cases with significant binding affinity changes
could be the reason for the good prediction performances over
the Ki-cases. Unfortunately, none of the presented scoring
functions could predict the neutral behavior of IC50- and Kd-
cases.
In the binary assessment, the accuracy of predictors was

measured upon analyzing the agreement between the direction
of change in the experimental and predicted binding affinities.
According to this metric, DSX-ONLINE accurately predicts
the affinity change of all Ki-cases. The success rate of DSX-
ONLINE over Ki-cases is followed by PoseScore and
PRODIGY-LIG, both leading to 83% accuracy. As another
important highlight, KDEEP (pKd) reaches 88% success rate in
IC50 cases. When the neutral cases were excluded from the
analysis, it is observed that DSX-ONLINE, PRODIGY-LIG,
and PoseScore can predict the drug-sensitive and drug-resistant
cases, with 100, 90, and 90% accuracies, respectively. For the
neutral cases, the best performance is achieved by DSX-
ONLINE and PRODIGY-LIG, with 62 and 54% accuracies.
Therefore, both delta and binary assessments are in agreement
with the fact that the mutations causing the most dramatic
binding affinity changes (resistance or sensitivity) are easier to
predict. However, the amount of neutral cases (n = 13) is
almost 3 times more than the drug-sensitive (n = 5) or drug-
resistant (n = 5) ones. Therefore, we cannot rule out the fact

that small and different sample sizes could have an impact on
the observed prediction accuracy.
As an across-metric comparison, over Ki-cases, DSX-

ONLINE leads to R values of 0.45 and 0.97 for direct and
delta assessments, respectively, and 100% accuracy for the binary
assessment. This accuracy improvement is explained by the fact
that while strong binders (complexes with lower Ki values)
show an orthogonal spread in the direct assessment, they show
a linear spread for the delta assessment (Figure S4). While delta
and binary assessments agree in this particular case, in some
other cases, delta and binary assessments contradict. For
example, PRODIGY-LIG achieves an R-value of 0.29 in the
delta assessment and 83% accuracy in the binary assessment over
the Ki-cases. This means that a scoring function may achieve
great success on the binary assessment because it can predict the
direction of affinity change. However, the same scoring
function may not be able to predict the amount of change
(ΔΔG), which would lead to a lower R-value. Within the
context of the biological meaning of the assessment
approaches, we suggest the concurrent use of delta and binary
assessments. After testing the web servers with crystal structures,
we have scored the HADDOCK-refined complexes with the
probed web servers too. These efforts have revealed that
structural refinement of crystal structures did not improve the
prediction accuracy (data not shown).
Finally, among the three different kinetic data types,

according to the direct assessment, IC50 turns out to be the

Figure 6. The default scoring function of DSX-ONLINE is tested on the Ki-associated crystal and homology model structures using delta
assessment. (a) Pink color corresponds to the neutral cases (left) or a decrease in the hydropathy index (middle) or residue volume (right).
Turquoise color corresponds to the sensitive cases (left) or an increase in the hydropathy index (middle) or residue volume (right). (b) The crystal
structure (PDB entry, 4WA9, orange) and the model structure (blue) of wild-type human ABL1 kinase were aligned (RMSD = 2.9 Å). (c) The
crystal structure (PDB entry 4TWP, orange) and the model structure (blue) of T315I mutant human ABL1 kinase were aligned (RMSD = 2.7 Å).
The ATP-binding pockets of the superposed structures are shown for both alignments. The ligand, the residue to be mutated, and the mutant
residue are shown in sticks. The glycine-rich loops are encircled with the gray ellipses.
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best descriptor for most of the scoring functions. When the
complexes are considered as mutant/wild-type pairs (delta and
binary assessments), Ki comes out as the best descriptor (Figure
S3). Interestingly, none of the methods could lead to a reliable
prediction over the Kd set. Kd is a universal measure of binding,
while Ki is defined for enzymes only, which could be the reason
for the high R values reported for this set.64 However, in this
case too, we cannot rule out the fact that success rates of the
kinetic descriptors may depend on the number of cases
available for each descriptor (eight pairs for IC50, nine pairs for
Kd, and six pairs for Ki).
2.3. Structure Quality has a Substantial Impact on

the Prediction Accuracy. In a real-life scenario, the
experimental structure of the kinase under study might not
be available. Taking this into consideration, we have homology
modeled the Ki-cases and probed these structures with DSX-
ONLINE (as this combination leads to the best performance
for the delta and binary assessments). The mutation-specific
features such as hydropathy index change,65 residue volume
change,66 and drug resistance or sensitivity were chosen for the
characterization of the affinity data Figure 6a). As a result of
this exercise, we show that the performance of DSX-ONLINE
is dramatically worsened by the worsened quality of the input
structure (an R-drop from 0.97 to 0.24). We also observe a
decrease in the residue volume upon mutation accompanied by
an increase of polarity and drug sensitivity. To understand how
modeling has impacted the conformations, we have performed
a minimal structure examination. The case pair with the visibly
highest predicted affinity difference was chosen for this exercise
(Figure 6a, red circled data points). In this regard, the human
ABL1 kinase−AXI complex is the choice. The wild-type and
mutant kinase structures of this case pair (4WA9, wild-type;
4TWP, mutant) has the highest root-mean-square deviation
(rmsd) between their backbone heavy atoms, when compared
with the other Ki-cases (Figure 6b,c). The structural
comparison of ABL1 and ABL T315I mutant shows that the
conformation of the glycine-rich loop is distinctly altered upon
modeling, misleading the DSX-ONLINE prediction. This
glycine-rich loop is an integral element of the ATP-binding
pocket, which is in direct contact with ABL’s ligand AXI. This
example highlights the importance of proper mutation
modeling in the prediction of mutant protein kinase−drug
binding affinity changes.

3. CONCLUSIONS

Our work investigates whether the web-based scoring tools can
predict the impact of protein kinase mutations on their ligand-
binding affinities. To test this, we have compiled BINDKIN,
the first structure-based affinity benchmark of wild-type and
mutant protein kinase−inhibitor complexes. Based on the Ki-
associated cases of BINDKIN, we have generated a homology
model benchmark too. Using the crystal structure sets and
their available experimental binding affinity data, we have
assessed the prediction accuracy of six different web-based
scoring tools, DSX-ONLINE, HADDOCK2.2, KDEEP,
PDBePISA, Pose&Rank, and PRODIGY-LIG. Overall, li-
gand-specific scoring functions (used by DSX-ONLINE,
KDEEP, Pose&Rank, and PRODIGY-LIG) performed better
than the general scoring functions (used by PDBePISA and
HADDOCK2.2). When the ligand-specific modified HAD-
DOCK67 scoring function was used, the prediction accuracy
did not improve significantly (data not shown).

When a deeper analysis is performed, we have observed that
(i) Ki is a sensitive descriptor that can capture the effect of
mutations on the binding affinity, (ii) DSX-ONLINE is the
best tool in predicting the mutation-induced Ki changes, (iii)
the quality of the input structure significantly impacts the
prediction accuracy. Therefore, despite the recent advances
presented by machine-learning tools in the field of computa-
tional structural biology, in our study, a classical knowledge-
based approach (DSX-ONLINE) still performed better than a
machine-learning approach (KDEEP).
All in all, as an answer to our title question, our results show

that we are currently far from rapidly and accurately predicting
the impact of protein kinase mutations, especially when the
kinase structure is not at hand. A more comprehensive
benchmark than BINDKIN is necessary to train and improve
the available predictors in a reliable manner. In this regard,
drug companies working on mutant oncogenic protein kinases
can facilitate a consistent and a more comprehensive data set
by providing their related experimental data. From our end, to
assist the kinase-research field, we are sharing our files
associated with this work online at https://github.com/CSB-
KaracaLab/BINDKIN.

4. METHODS
4.1. Collection of the BINDKIN Benchmark. To

construct the BINDKIN (effect of point mutations on the
BINDing affinity of protein KINase−ligand complexes)
benchmark, we performed a thorough search in the Protein
Data Bank (PDB)68 (https://www.rcsb.org/). We obtained
the final list of wild-type and mutant kinase−ligand pairs
according to the following criteria:

• For each mutant protein kinase−ligand complex, there
has to be a wild-type complex, containing the same
protein and the ligand.

• Structures of wild-type and mutant complexes should
originate from the same research article.

• For each complex pair, there has to be experimentally
determined binding affinity data, originating from the
same research. The experimental binding affinity data
were acquired from PDBbind (http://www.pdbbind-cn.
org/index.php),69−71 Binding DB (https://www.
bindingdb.org/bind/index.jsp),72 and Binding MOAD
(http://bindingmoad.org/Search/advancesearch)73,74

databases.
• The ligand has to be an ATP-competing reversible

(noncovalent) inhibitor.

These criteria left us with 23 pairs of wild-type and mutant
complexes, making up the BINDKIN benchmark. In the
benchmark, three kinases are found in the dimeric state (PDB
IDs: 2IW8/2IW9, 3G0F, and 4EOR/4EOK). However, in
these cases, the protein−protein dimerization interface is not
involved in the ligand interactions. Therefore, these cases have
been treated as monomeric kinase complexes. The BINDKIN
benchmark includes seven EGFR, three Abl, three Mps1, three
Src, two Cdk2, one ALK, one FGFR, one Kit, and one PKA
proteins. These complexes present 36 point mutations
distributed across 15 unique positions within or in the vicinity
of the ATP-binding pocket (Figure 3a).
BINDKIN covers binding modes of 18 different inhibitors

(Figure S1). The 2D images of the ligands were generated
from their respective unique SMILES strings, using the
Smi2Depict tool of ChemDB Chemoinformatics Portal
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(http://cdb.ics.uci.edu/cgibin/Smi2DepictWeb.py).75 The
pharmacophoric characteristics of ligands were evaluated
with the ALOGPS web server of the Virtual Computational
Chemistry Laboratory (http://www.virtuallaboratory.org/
web/alogps/)76−85 and the pkCSM web server (http://
structure.bioc.cam.ac.uk/pkcsm).86 The available ligand-re-
lated data were obtained from RCSB PDB and PubChem
(https://pubchem.ncbi.nlm.nih.gov/). All the benchmark-
related features are deposited in https://github.com/CSB-
KaracaLab/BINDKIN. Further details about the benchmark
characteristics are described in the Results and Discussion
section.

4.2. BINDKIN-Homology Model Benchmark. When the
structure of the protein kinase under study is not at hand, the
researchers often resort to homology modeling to predict the
relevant structure. Therefore, to simulate a realistic scenario,
we established a homology model benchmark for the Ki-
associated cases. Here, we chose the Ki-associated cases, as
their binding affinities were predicted with the overall highest
accuracy based on the available BINDKIN crystal structures.
The wild-type and mutant sequences were structurally

modeled with the default settings of the I-TASSER web server
(https://zhanglab.ccmb.med.umich.edu/I-TASSER/).87−89

During modeling, the original coordinates of the wild-type or
mutant structures were excluded from the template list. After
obtaining the homology models, their corresponding ligands
were placed at their catalytic-binding pocket using the original
crystal structure as a template. The fitting was performed with
PyMOL.90 In these crude models, steric clashes were observed.
To optimize the protein−ligand interface, we applied water
refinement on each model using the HADDOCK2.2 refine-
ment interface (https://milou.science.uu.nl/services/
HADDOCK2.2/haddockserver-refinement.html).42 The
HADDOCK refinement performs very short molecular
dynamics simulation cycles in explicit water.

4.3. Benchmarking of the Web Servers. The molecules
present other than the protein and the ligand either led to an
error in the web servers or were disregarded by the web
servers. We should note here that DSX-ONLINE has an option
to include water molecules in the calculations. However, to
measure the performance on a standardized set of crystal
structures, we decided to use the same input in all servers.
Therefore, before benchmarking, the crystallization buffer
additives, crystal water molecules, and ions were removed from
the co-crystal structures. For each occurrence of multiple
conformations, the conformer with the highest occupancy was
retained, and the other conformers were removed. In one of
the EGFR cases (5EM7), the ligand 5Q4 is present in two
distinct conformations. Both conformations were taken into
consideration.
The ligand coordinate files were converted to “mol2” and

“sdf” formats based on the different file format requirements of
the web servers. For mol2 conversion, Open BABEL (v2.4.1),
and for sdf conversion, Online SMILES Translator and
Structure File Generator (National Cancer Institute)
(https://cactus.nci.nih.gov/translate/) were used. For the sdf
conversion, the “Aromatic” SMILES representation option
(prints the unique SMILES string into the “sdf” file) and the
“3D” coordinate option were chosen. The sdf files were
protonated by default. The conformations and the 3D
coordinates of the ligands were retained during conversion
to both mol2 and sdf formats.T
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Six different web-based scoring functions were used to
predict the binding affinities listed within BINDKIN. A short
description of each web server is provided in Table 1. Among
the web servers, DSX-ONLINE became inaccessible shortly
after the completion of its benchmarking.
4.4. Assessment of the Prediction Results. Three

different approaches were used to assess the prediction results.
These are direct, delta, and binary assessments. The direct
assessment is a classical approach, where a linear correlation
between all scores and experimental data (wild-type and
mutant) were sought. For the delta assessment, a direct
relationship between the mutation-induced binding affinity
(Δbaexp, eq 1) and the mutation-induced score (Δbapred, eq 2)
changes was sought.

Δ = −_ _ ‐ba ba baexp exp mutant exp wild type (1)

Δ = −_ _ ‐ba ba bapred pred mutant pred wild type (2)

In the case of binary assessment, an agreement in the
direction of mutation-induced change was required. For
example, if a mutation leads to a worsening of the experimental
binding affinity, and it is predicted as such by the computa-
tional prediction, it was considered as a successful prediction. If
a worsening in the predicted affinity accompanies a mutation-
induced improvement in the experimental affinity, then this
case was counted as a misprediction. In the binary assessment,
the percentage of correct predictions was used as the overall
success rate.
For linear regression analyses, the associated R and p values

and the plots were generated with R (v3.6.1),92 invoked by
RStudio (v1.2.5001).93 The following R packages were used to
generate scatterplots, barplots, or histograms: ggpubr,94

ggplot2,95 magrittr,96 ggrepel,97 grid,92 and gridExtra.98 The
heatmap was produced with pheatmap99 and RColorBrewer100

R packages.
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