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Electrically tunable Dicke effect in a double-ring resonator
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We study the finite-element method analysis of the Dicke effect using numerical simulations in an all-optical
system of an optical waveguide side-coupled to two interacting ring resonators in a liquid crystal environment.
The system is shown to exhibit all the signatures of the Dicke effect under active and reversible control by an
applied voltage.
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I. INTRODUCTION

The Dicke effect, substantial narrowing of spectral line
shapes due to collisions of radiating and nonradiating atoms,
was first described by R. H. Dicke in [1]. The overall line
shape consists of a superposition of broad and narrow peaks
centered at the transition frequency. This splitting of atomic
decay into pairs of fast- and slow-decay channels is closely
related to the superradiance phenomenon predicted shortly
after description of the Dicke effect [2]. Superradiance is a
cooperative spontaneous emission of radiation from an initially
excited coherent ensemble of atoms. The slow- and fast-decay
channels are respectively called subradiant and superradiant
decays of the system. Collective symmetric or antisymmetric
states of an ensemble of atoms are in superradiant and
subradiant phases, respectively.

In addition to atomic ensembles, the Dicke effect has
been extensively studied in other systems, such as photonic
crystals [3], plasmonic lattices [4], electronic mesoscopic
systems [5–12], and electron waveguides [13,14]. Not all the
characteristics of the Dicke effect can be found in these sys-
tems. Furthermore, control of the Dicke effect is challenging.
Our purpose is to examine the Dicke effect in an all-optical
device with active and reversible control. We find that a pair
of microring resonators coupled to a waveguide can exhibit
all the key signatures of the Dicke effect in a controllable
way in a nematic liquid crystal (NLC). Tunable lifetimes of
quasibound states in the resonators can be translated into
reversible active control of optical signals in multiple-ring-
resonator configurations. These systems are used for optical
communication and signal processing applications such as
all-optical logic gates [15] and all-optical memory elements
[16].

The system allows for controlled investigations of quantum
interference and decoherence. It provides an all-optical analog
of the Anderson-Fano model that is a prototypical description
of interaction between (quasi)bound and (quasi)continuum
states [17,18]. By extension of the system to a multiple-ring
configuration, quantum phase transitions in the context of
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superradiance can be systematically examined and probed (for
a review, see [5] and references therein).

This paper is organized as follows. In Sec. II, we explain
the theory behind the tuning of the refractive index of the
NLC cladding by application of a voltage from electrodes
positioned to the right and left sides of the double-ring system.
In Sec. III, we analyze the resonance characteristics of the
double-ring system without an applied potential, that is, the
dependence of the resonance width and tuning on the gap
between the two microring resonators. In Sec. IV, we show
how we control the resonance width and tuning by applying
a potential from electrodes. In Sec. V, we show the methods
used in our numerical computations. We reserve Sec. VI for
concluding remarks.

II. TUNING OF THE REFRACTIVE INDEX OF THE
NEMATIC LIQUID CRYSTAL CLADDING WITH

APPLIED VOLTAGE

A NLC can be used to tune the resonances of a single-
ring resonator coupled to a waveguide [19]. To control the
linewidths, we introduce another ring to the system as shown in
Fig. 1: Two identical microring resonators at a distance d apart
are side-coupled to a waveguide. A TE-polarized Gaussian
beam (in which the electric field is perpendicular to the plane of
the resonators) is sent from the input port of the waveguide. A
voltage is provided by two electrodes to change the orientation
of the NLC molecules used to clad the resonators. A similar
setup without a NLC has been examined for its reflective
properties [20,21]. The NLC allows for controllable coupling
coefficients between the resonators and the waveguide.

For a single ring, the resonance wavelength is determined by
the Fabry-Pérot étalon resonance condition mλm = 2πRneff ,
where m = 1,2,3, . . . ,λm is the wavelength of the mth res-
onator mode, R is the radius of the microring resonator, and
neff is the effective refractive index for the waveguide mode
[19,22]. Proximity coupling by the evanescent tails makes neff

dependent on the refractive index of the NLC cladding, nclad,
which is determined by
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FIG. 1. (Color online) Dimensions of the system consisting of
two ring resonators on top of a waveguide fed by two electrodes.

where ne = 1.744 and no = 1.517 at 589 nm [19], and θ is the
angle of the NLC directors (local pseudovectors in the mean
molecular long-axis direction) relative to the radial axis from
the origin in the middle of the electrodes [19,23].

When there is no applied field, the NLC is in the isotropic
phase so that nclad = 1.596 with the assumption that the optical
field is too weak to induce any reorientation of the NLC
directors (optical Fréedericksz effect). When a sufficiently
strong potential is applied from the electrodes, the directors
are deformed as shown in Fig. 2. For given elastic properties,
θ is locally determined by the Euler-Lagrange equations to
minimize the free-energy density of the NLC. The directors
are fully polarized in the applied electric field direction for
a potential field much stronger than the elastic contribution
[24]. This permits local modulation of neff analogous to the
electro-optic effect. The electric field lines in Fig. 2, which
are numerically determined by the Poisson equation, indicate
the director alignments, which are controlled by the boundary
conditions at the electrodes [19]. After the θ distribution
is found, the spatially inhomogeneous refractive index of
the NLC cladding is calculated by Eq. (1). This is used to
propagate the Gaussian beam in the waveguide and to evaluate
its transmission. We repeat this process for different potential
values and different separations between the rings.

The reflection characteristics of coupled-ring resonators
have been examined [20,21] by the transfer matrix formalism
[25,26]. We follow a computational approach based upon the

FIG. 2. (Color online) Angular difference (degrees) between the
directors of the NLC molecules and the radial axis. The arrows show
the direction of the electric field generated by the electrodes at 5 V.

finite-element method (FEM) to examine the coupling between
the electromagnetic modes as realistically as possible and to
treat NLC cladding correctly [27]. We verify that our numerical
analysis yields line-shape structures similar to those obtained
by the transfer matrix method. We calculate the resonances
by evaluating the intensity of the wave at the output port
of the waveguide, Iout. The spatially inhomogeneous nclad is
used in the coupled wave equations to solve for the modes
in the resonator and the waveguide and the evanescent waves
in the NLC. Different computational grids are used for each
geometry arising when the ring separation is varied. The
numerical analysis used to calculate the effect of the applied
voltage from the electrodes on tuning of the refractive index
of the NLC cladding is explained in Sec. V.

III. DOUBLE-RING RESONATOR SYSTEM WITHOUT
APPLIED VOLTAGE

The resonances of the system for different d values (the gap
distance between the rings) without an applied potential are
shown in Fig. 3. A characteristic splitting of the single-ring
resonance into four peaks is observed. The effect can be
viewed as two separate resonances of the double-ring system,
each split into two peaks. However, the pair of resonances of
the double-ring system arises when there is some proximity
coupling between the rings. The resonance of a single isolated
ring splits into two peaks when another ring is placed so as
to interact with it. When there are two identical rings, this
perturbation is a level repulsion or anticrossing effect. When a
waveguide is introduced to the system, further splitting of the
resonances occur that results in further peaks. Our explanation
is based upon the transfer matrix analysis of this system in
Refs. [20] and [21]. There, the authors found numerically
that the resonance of an isolated ring splits into two modes,
symmetric and antisymmetric, depending on the ring-ring
coupling. Further splitting of these modes is due to the coupling
of the waveguide. In this work, the NLC environment serves as
a means to control the relative strengths of the ring-waveguide
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FIG. 3. (Color online) Resonance of the single-ring resonator
(dashed line) and double-ring resonator system (solid line) as a
function of wavelength for d values of (a) 25, (b) 50, (c) 75, and
(d) 100 nm at 0 V.
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and ring-ring coupling. We focus on controlling the linewidth
in addition to the resonance splitting in this way.

Four peaks arise because of the simultaneous presence
of direct proximity coupling together with the additional
bus-waveguide-mediated coupling between the rings [21].
In other systems such as ballistic electron guides, two-peak
splitting occurs since the resonators are coupled only through
the bus waveguide. The asymmetry of the line shapes in Fig. 3
is also a characteristic signature of quantum interference. The
interference is of Fano type because of the spectrally overlap-
ping subradiant and superradiant decay channels. When the
gap between two ring resonators is widened, the proximity
coupling between the rings is reduced while the bus-ring
coupling remains unchanged. The splitting about the isolated
ring resonance between the symmetrically placed symmetric
and antisymmetric modes decreases. The further splitting of
these modes due to the ring-bus interaction is independent
of d but their width (�, full width at half maximum) varies
with it.

In addition to the splitting into subradiant and superradiant
channels, the linewidths have oscillatory behavior with d. This
signature of the Dicke effect is due to the spatial interference
of radiation from decaying quasibound states of the rings
coupled to the waveguide at separated locations inherent to the
collective nature of the system. In our case, Dicke oscillations
of symmetric and antisymmetric modes are translated into
further split modes. The effect can be understood as analogous
to the level repulsion between coherently coupled degenerate
bound states [14]. Interacting (interfering) decay channels also
split, along with the interaction caused by splitting of the
resonances. If the linewidths are represented as imaginary parts
of the resonances, the symmetric and antisymmetric modes lie
180◦ out of phase in the complex plane. The interaction channel
through the bus waveguide introduces d-dependent phase
accumulation to the mode freely propagating between the rings
along the waveguide. This is translated as a sinusoidal coupling
between the rings or a rotation operation in the complex energy
plane. The resonances collapse back onto the isolated ring
value in a spiraling fashion when the gap between the rings
is increased. During this spiral motion, the imaginary parts
periodically become vanishing and finite, and hence oscillation
occurs.

When two identical systems interact via proximity coupling
then perturbation theory yields a level repulsion for a reso-
nance, that is, E0, in the form E± = E0 ± δ, where δ denotes
the level shift, whose strength depends on the interaction. The
corresponding states are the symmetric and antisymmetric
modes. Here, ± is interpreted as the phase difference; it
can be expressed as exp(iπ ) and can be viewed as the two
modes (more strictly speaking the energies of the modes)
lying opposite (180◦ out of phase) to each other relative to
the midpoint E0. These energies are mapped to the complex
plane for the following reason: When there are decay channels
present, the system becomes an open one that can be described
by non-Hermitian Hamiltonians. Recently, this approach was
systematically used to interpret superradiant phase transitions
in one-dimensional nanostructures in terms of non-Hermitian
effective Hamiltonians [28]. The spectrum of the system
consists of complex eigenenergies where the imaginary parts
represent the decay rates or the linewidths. If the decay rate
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FIG. 4. (Color online) (a) Width of the picked resonance in
Fig. 3(a) vs the gap between the two ring resonators. (b) Resonance
tuning vs additional gap distance above d = 25 nm at 0 V.

for a single isolated subsystem is denoted by �0, the level
anticrossing in the complex energy plane can be expressed as
E± = E0 ± δ − i(�0 ± γ ). Here, γ represents the interference
term arising from the interacting decay channels. These
complex energies again lie out of phase and are centered
about the pole E0 − i�0. In the case of the two-ion model of
Dicke, γ is proportional to the zeroth-order spherical Bessel
function of kd with k and d being the photon wave number
and the distance between the ions, respectively [11]. It has
the same form of distance dependence in the case of coupled
quantum dots [11], while for the ballistic electron waveguide
with two ripple cavities, it becomes a sinusoidal function [14].
Our numerical results reveal that the linewidths for the system
of double-ring cavities side-coupled to a waveguide behave
like the original Dicke model of two ions.

Choosing the most energetic resonance, labeled with a box
in Fig. 3(a), at d = 25 nm, we investigate the dependence
of the resonance width and resonance wavelength on the
spatial separation between the rings. Figure 4(a) shows the
variation in the width of the resonance as a function of the gap
between the two ring resonators. The coupling between the
rings decreases with increasing distance and the oscillations
eventually disappear. The width saturates at the single-ring
value at long distances. In the one-dimensional system of a
two-ripple ballistic electron waveguide, sinusoidal periodic
behavior of the resonance width is found because the coupling
does not decay with distance [14]. Our situation is similar
to the traditional Dicke systems in higher dimensions, where
the coupling decreases with increasing distance [11,12]. Res-
onance tuning as a function of the gap amount, �, additional
to d is shown in Fig. 4(b). As the coupling decreases with
distance, the splitting of the collective modes decreases. Thus,
the most energetic mode becomes less and less different from
the single-ring resonance.

In the double-ring resonator system, we expect an en-
hancement of the rate of transmission only in the case of
the superradiant channel and a decrease in the case of the
subradiant channel. The overall intensity will be the same
as at the input (or most likely less in practice because of
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emission into free space from the rings or other losses). The
long-lived antisymmetric quasibound state of the double-ring
system (in Dicke’s term, the superradiant state) decays twice
as fast as the quasibound state of the single-ring system. The
short-lived symmetric quasibound state of the double-ring
system (in Dicke’s term, the subradiant state) exists for twice
as long as the quasibound state of the single-ring system. Our
numerical results indicate that the superradiant decay is about
three times faster than the decay of a single isolated ring.
For a two-atom system, the enhancement in the linewidth is
2.5 times more than for the single-atom system [11]. In the
double-ring system, the linewidth of a single peak or two
adjacent resonances increases while that of the other single
peak or two adjacent resonances decreases.

In addition to the linewidth changes, superradiant scattering
and quadratic enhancement of the scattered intensity with the
number of emitters can also be found in our system. To show
that, another waveguide can be introduced above the double-
ring system to serve as the output or scattering channel. Then
the input channel can be viewed as the drive or incoming field,
which is the TE-polarized Gaussian beam sent from the input
port at the left side of the lower waveguide. The transmission
characteristics of the system are determined by analysis of
the beam detected in the output port at the left side of the
upper waveguide. We find that the output intensity increases
quadratically. This result shows that our system is capable of
exhibiting all the signatures of the Dicke effect. More detailed
analysis of the two-waveguide system coupled with more ring
resonators should be the subject of further studies.

IV. DOUBLE-RING RESONATOR SYSTEM UNDER
APPLIED VOLTAGE

We examine possible active control of the signatures of the
Dicke effect demonstrated in Fig. 4 by considering another
energetic resonance found at a larger separation between the
rings and labeled with a box in Fig. 3(d) at d = 100 nm. When
the potential applied from the electrodes is turned on, the
linewidth and the resonance are changed as shown in Fig. 5.
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FIG. 5. (Color online) (a) Resonance width and (b) resonance
tuning of the picked resonance in Fig. 3(d) at d = 100 nm vs applied
voltage from the electrodes.
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FIG. 6. (Color online) (a) Width of the chosen resonance in
Fig. 3(a) vs the gap between two ring resonators for different voltage
values applied from the electrodes. (b) Increase in the periodicity of
the resonance width function for different voltage values.

The linewidth decreases with increasing potential, which
aligns the directors such that the cladding index increases to
ne in the coupler zones. This locally reduces the index contrast
with the silicon guides and enhances the field penetration.
Hence, the proximity coupling between the resonators in-
creases. The chosen most energetic mode becomes further split
from the single-ring resonance with the increasing coupling
coefficient. The applied voltage and the spatial separation
between the rings have opposite effects on the coupling
resonators.

We analyze the influence of the external potential on
the periodicity of � as a function of d. Figure 6(a) is in
agreement with the earlier observations in Fig. 5(a) that the
resonance width decreases with increasing applied voltage.
The periodicity of � when no voltage is applied [see Fig. 3(a)]
is determined to be λD = 48.92 nm; δD is the change of
the period from this value when the potential is applied.
Figure 6(b) shows that the periodicity of � increases steadily
with increase in the potential applied from the electrodes.
Enhanced coupling of the rings increases the splitting of
symmetric and antisymmetric modes. This brings the chosen
most energetic resonance closer to the waveguide mode. Thus,
the free propagation and the associated phase accumulation
between the rings occur at smaller frequency or at larger period.
In the complex energy plane, the rate of rotation with d is
reduced.

V. NUMERICAL METHOD

We do the numerical analysis using the FEM. We analyze
the system in two steps. First, we calculate the change in the re-
fractive index of the NLC cladding with applied potential from
the electrodes by solving an electrostatics problem. Second,
the new refractive index value is used for the NLC cladding
environment in a wave equation to analyze fully the resonance
nature of the microring resonator system under applied
voltage.
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The electrostatics problem in the whole system including
the silicon rings and waveguide and the NLC cladding is
given by

∇ · ε0n
2∇V = 0, (2)

where n is the refractive index of each material (for the
NLC, we use ne = 1.744 and no = 1.517, and for silicon,
n = 3.48). We apply electric shielding boundary conditions
in the boundaries around the overall system except for the
electrodes:

n · D = −∇t · ε0∇tV , (3)

where n is the unit vector in the direction normal to the plane
of the resonators. At the electrodes, a potential V0 is applied
from the left side and the right side is grounded.

After the electrostatics problem has been solved, we have
the following wave equation for the NLC medium:

∇ × (∇ × Ezẑ) − n2k2
0Ezẑ = 0, (4)

where n is the refractive index of the NLC cladding defined
in Eq. (1) calculated by solution of the electrostatics problem
and fed into the wave equation to be used as the new value of
the refractive index of the NLC cladding. In the silicon rings
and waveguide, the wave equation

∇ × (∇ × Ezẑ) −
(

n2 − jσ

ωε0

)
k2

0Ezẑ = 0 (5)

is used, where n = 3.48 and σ = 10−12 (S/m) (silicon). In the
boundaries around the overall system except at the ports, an
impedance boundary condition is applied:

n × H +
√

n2 − jσ

ω
n × (E × n) = 0. (6)

At the ports, a Gaussian-shape beam is introduced as
shown:

Ez = E0exp

(
(−y − y0)2

r2

)
, (7)

where y0 is the center of the waveguide and r is 300 nm.

VI. CONCLUSION

We have examined the resonances and their widths in an
all-optical system of a pair of ring resonators side-coupled
to an optical waveguide in a NLC environment. We found
that the system exhibits all the key signatures of the Dicke
effect: splitting of the lifetimes into slow- and fast-decaying
channels in an oscillatory manner with the separation of the
resonators. The energies and the lifetimes of the quasibound
states of the resonators can be controlled with an applied
voltage which allows for tunable longer range interactions
between the resonators. Such reversible active control can
be used to examine coherent collective effects, decoherence,
and superradiant phase transitions. In addition, fine tuning
of the finesse and full spectral range can be exploited for
multiring systems, such as CROW [29] and SCISSOR [30]
configurations, as well as rings coupled to multiple waveg-
uides. These systems have many applications, particularly in
optical logic and memory, filtering, reflectivity, and optical
switching.
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